Room-Temperature Spin-Orbit Torque from Topological Surface States

Spin-momentum locked surface states in topological insulators (TIs) provide a promising route for achieving high spin-orbit torque (SOT) efficiency beyond the bulk spin-orbit coupling in heavy metals (HMs). However, in previous works, there is a huge discrepancy among the quantitative SOTs from TIs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2019-11, Vol.123 (20), p.207205-207205, Article 207205
Hauptverfasser: Wu, Hao, Zhang, Peng, Deng, Peng, Lan, Qianqian, Pan, Quanjun, Razavi, Seyed Armin, Che, Xiaoyu, Huang, Li, Dai, Bingqian, Wong, Kin, Han, Xiufeng, Wang, Kang L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Spin-momentum locked surface states in topological insulators (TIs) provide a promising route for achieving high spin-orbit torque (SOT) efficiency beyond the bulk spin-orbit coupling in heavy metals (HMs). However, in previous works, there is a huge discrepancy among the quantitative SOTs from TIs in various systems determined by different methods. Here, we systematically study the SOT in the TI(HM)/Ti/CoFeB/MgO systems by the same method, and make a conclusive assessment of SOT efficiency for TIs and HMs. Our results demonstrate that TIs show more than one order of magnitude higher SOT efficiency than HMs even at room temperature, at the same time the switching current density as low as 5.2×10^{5}  A cm^{-2} is achieved with (Bi_{1-x}Sb_{x})_{2}Te_{3}. Furthermore, we investigate the relationship between SOT efficiency and the position of Fermi level in (Bi_{1-x}Sb_{x})_{2}Te_{3}, where the SOT efficiency is significantly enhanced near the Dirac point, with the most insulating bulk and conducting surface states, indicating the dominating SOT contribution from topological surface states. This work unambiguously demonstrates the ultrahigh SOT efficiency from topological surface states.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.123.207205