Multimessenger constraints on the neutron-star equation of state and the Hubble constant
Observations of neutron-star mergers with distinct messengers, including gravitational waves and electromagnetic signals, can be used to study the behavior of matter denser than an atomic nucleus and to measure the expansion rate of the Universe as quantified by the Hubble constant. We performed a j...
Gespeichert in:
Veröffentlicht in: | Science 2020-12, Vol.370 (6523), p.1450-1453 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Observations of neutron-star mergers with distinct messengers, including gravitational waves and electromagnetic signals, can be used to study the behavior of matter denser than an atomic nucleus and to measure the expansion rate of the Universe as quantified by the Hubble constant. We performed a joint analysis of the gravitational-wave event GW170817 with its electromagnetic counterparts AT2017gfo and GRB170817A, and the gravitational-wave event GW190425, both originating from neutron-star mergers. We combined these with previous measurements of pulsars using x-ray and radio observations, and nuclear-theory computations using chiral effective field theory, to constrain the neutron-star equation of state. We found that the radius of a 1.4-solar mass neutron star is [Formula: see text] km at 90% confidence and the Hubble constant is [Formula: see text] at 1σ uncertainty. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.abb4317 |