Recent and planned hydrodynamic instability experiments on indirect-drive implosions on the National Ignition Facility

At National Ignition Facility (NIF), yield amplification due to alpha particle heating approached ~3 in the highest performing inertial confinement fusion (ICF) implosions, while yield amplification of ~15-30 is needed for ignition. Hydrodynamic instabilities are a major factor in degradation of imp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:High energy density physics 2020-08, Vol.36 (na), p.100820, Article 100820
Hauptverfasser: Smalyuk, V.A., Weber, C.R., Landen, O.L., Ali, S., Bachmann, B., Celliers, P.M., Dewald, E., Fernandez, A., Hammel, B.A., Hall, G., MacPhee, A.G., Pickworth, L., Robey, H.F., Alfonso, N., Baker, K.L., Hopkins, L.F. Berzak, Carlson, L., Casey, D.T., Clark, D.S., Crippen, J., Divol, L., Döppner, T., Edwards, J., Farrell, M., Felker, S., Field, J.E., Haan, S.W., Hamza, A.V., Havre, M., Herrmann, M.C., Hsing, W.W., Khan, S., Kline, J., Kroll, J.J., LePape, S., Loomis, E., MacGowan, B.J., Martinez, D., Masse, L., Mauldin, M., Milovich, J.L., Moore, A.S., Nikroo, A., Pak, A., Patel, P.K., Peterson, J.L., Raman, K., Remington, B.A., Rice, N., Schoff, M., Stadermann, M., Yi, S.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue na
container_start_page 100820
container_title High energy density physics
container_volume 36
creator Smalyuk, V.A.
Weber, C.R.
Landen, O.L.
Ali, S.
Bachmann, B.
Celliers, P.M.
Dewald, E.
Fernandez, A.
Hammel, B.A.
Hall, G.
MacPhee, A.G.
Pickworth, L.
Robey, H.F.
Alfonso, N.
Baker, K.L.
Hopkins, L.F. Berzak
Carlson, L.
Casey, D.T.
Clark, D.S.
Crippen, J.
Divol, L.
Döppner, T.
Edwards, J.
Farrell, M.
Felker, S.
Field, J.E.
Haan, S.W.
Hamza, A.V.
Havre, M.
Herrmann, M.C.
Hsing, W.W.
Khan, S.
Kline, J.
Kroll, J.J.
LePape, S.
Loomis, E.
MacGowan, B.J.
Martinez, D.
Masse, L.
Mauldin, M.
Milovich, J.L.
Moore, A.S.
Nikroo, A.
Pak, A.
Patel, P.K.
Peterson, J.L.
Raman, K.
Remington, B.A.
Rice, N.
Schoff, M.
Stadermann, M.
Yi, S.A.
description At National Ignition Facility (NIF), yield amplification due to alpha particle heating approached ~3 in the highest performing inertial confinement fusion (ICF) implosions, while yield amplification of ~15-30 is needed for ignition. Hydrodynamic instabilities are a major factor in degradation of implosions while understanding and mitigation of the instabilities are critical to achieving ignition. This article describes recent and planned hydrodynamic instability experiments with several focused platforms that have been developed to directly measure these instabilities in all phases of ICF implosions. Measurements of ripple-shock generation at OMEGA laser have indicated initial seeds for the instabilities in three ablators - plastic (CH), beryllium, and high-density carbon (HDC). Hydrodynamic Growth Radiography (HGR) platform was used to measure instability growth at the ablation front in the acceleration phase of implosions. This platform used pre-imposed 2-D perturbations for growth factor measurements at different perturbation wavelengths and was also used to measure growth of “native roughness” modulations, fill tubes, and capsule support membranes or “tents”. Also, in the acceleration phase several new experimental platforms have been or are being developed to measure instability growth at the ablator-ice interface. In the deceleration phase of implosions, “self-emission” and “self-backlighting” platforms were developed to measure perturbations near peak compression. This article reviews recent progress and results.
doi_str_mv 10.1016/j.hedp.2020.100820
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1763943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1574181820300689</els_id><sourcerecordid>S1574181820300689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-159b46ad6e5566cc97ca20fc98701420b2599391d715397b309f3282573ae7f23</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU_Be9d8tE0DXmTxY2FRED2HNJm6WbppacJi_73p1rOnmcm870vmQeiWkhUltLzfr3Zg-xUjbHogFSNnaEErUWWkKPl56guRZ7Si1SW6CmFPSM4Zowt0_AADPmLtLe5b7T1YvBvt0NnR64Mz2PkQde1aF0cMPz0M7pD0AXc-rawbwMTMDu4I2B36tguu86dl3AF-0zGNusWbb--mFj9rc4q6RheNbgPc_NUl-np--ly_Ztv3l836cZuZnIuY0ULWealtCUVRlsZIYTQjjZGVIDRnpGaFlFxSK2jBpag5kQ1nFSsE1yAaxpfobs7tQnQqGBfB7EyXzjRRUVFymfMkYrPIDF0IAzSqT1fqYVSUqAmv2qsJr5rwqhlvMj3MJkjfPzoYpnTwBmYmynbuP_svhuGEnA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Recent and planned hydrodynamic instability experiments on indirect-drive implosions on the National Ignition Facility</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Smalyuk, V.A. ; Weber, C.R. ; Landen, O.L. ; Ali, S. ; Bachmann, B. ; Celliers, P.M. ; Dewald, E. ; Fernandez, A. ; Hammel, B.A. ; Hall, G. ; MacPhee, A.G. ; Pickworth, L. ; Robey, H.F. ; Alfonso, N. ; Baker, K.L. ; Hopkins, L.F. Berzak ; Carlson, L. ; Casey, D.T. ; Clark, D.S. ; Crippen, J. ; Divol, L. ; Döppner, T. ; Edwards, J. ; Farrell, M. ; Felker, S. ; Field, J.E. ; Haan, S.W. ; Hamza, A.V. ; Havre, M. ; Herrmann, M.C. ; Hsing, W.W. ; Khan, S. ; Kline, J. ; Kroll, J.J. ; LePape, S. ; Loomis, E. ; MacGowan, B.J. ; Martinez, D. ; Masse, L. ; Mauldin, M. ; Milovich, J.L. ; Moore, A.S. ; Nikroo, A. ; Pak, A. ; Patel, P.K. ; Peterson, J.L. ; Raman, K. ; Remington, B.A. ; Rice, N. ; Schoff, M. ; Stadermann, M. ; Yi, S.A.</creator><creatorcontrib>Smalyuk, V.A. ; Weber, C.R. ; Landen, O.L. ; Ali, S. ; Bachmann, B. ; Celliers, P.M. ; Dewald, E. ; Fernandez, A. ; Hammel, B.A. ; Hall, G. ; MacPhee, A.G. ; Pickworth, L. ; Robey, H.F. ; Alfonso, N. ; Baker, K.L. ; Hopkins, L.F. Berzak ; Carlson, L. ; Casey, D.T. ; Clark, D.S. ; Crippen, J. ; Divol, L. ; Döppner, T. ; Edwards, J. ; Farrell, M. ; Felker, S. ; Field, J.E. ; Haan, S.W. ; Hamza, A.V. ; Havre, M. ; Herrmann, M.C. ; Hsing, W.W. ; Khan, S. ; Kline, J. ; Kroll, J.J. ; LePape, S. ; Loomis, E. ; MacGowan, B.J. ; Martinez, D. ; Masse, L. ; Mauldin, M. ; Milovich, J.L. ; Moore, A.S. ; Nikroo, A. ; Pak, A. ; Patel, P.K. ; Peterson, J.L. ; Raman, K. ; Remington, B.A. ; Rice, N. ; Schoff, M. ; Stadermann, M. ; Yi, S.A. ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>At National Ignition Facility (NIF), yield amplification due to alpha particle heating approached ~3 in the highest performing inertial confinement fusion (ICF) implosions, while yield amplification of ~15-30 is needed for ignition. Hydrodynamic instabilities are a major factor in degradation of implosions while understanding and mitigation of the instabilities are critical to achieving ignition. This article describes recent and planned hydrodynamic instability experiments with several focused platforms that have been developed to directly measure these instabilities in all phases of ICF implosions. Measurements of ripple-shock generation at OMEGA laser have indicated initial seeds for the instabilities in three ablators - plastic (CH), beryllium, and high-density carbon (HDC). Hydrodynamic Growth Radiography (HGR) platform was used to measure instability growth at the ablation front in the acceleration phase of implosions. This platform used pre-imposed 2-D perturbations for growth factor measurements at different perturbation wavelengths and was also used to measure growth of “native roughness” modulations, fill tubes, and capsule support membranes or “tents”. Also, in the acceleration phase several new experimental platforms have been or are being developed to measure instability growth at the ablator-ice interface. In the deceleration phase of implosions, “self-emission” and “self-backlighting” platforms were developed to measure perturbations near peak compression. This article reviews recent progress and results.</description><identifier>ISSN: 1574-1818</identifier><identifier>EISSN: 1878-0563</identifier><identifier>DOI: 10.1016/j.hedp.2020.100820</identifier><language>eng</language><publisher>United States: Elsevier B.V</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><ispartof>High energy density physics, 2020-08, Vol.36 (na), p.100820, Article 100820</ispartof><rights>2020 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-159b46ad6e5566cc97ca20fc98701420b2599391d715397b309f3282573ae7f23</citedby><cites>FETCH-LOGICAL-c437t-159b46ad6e5566cc97ca20fc98701420b2599391d715397b309f3282573ae7f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.hedp.2020.100820$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1763943$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Smalyuk, V.A.</creatorcontrib><creatorcontrib>Weber, C.R.</creatorcontrib><creatorcontrib>Landen, O.L.</creatorcontrib><creatorcontrib>Ali, S.</creatorcontrib><creatorcontrib>Bachmann, B.</creatorcontrib><creatorcontrib>Celliers, P.M.</creatorcontrib><creatorcontrib>Dewald, E.</creatorcontrib><creatorcontrib>Fernandez, A.</creatorcontrib><creatorcontrib>Hammel, B.A.</creatorcontrib><creatorcontrib>Hall, G.</creatorcontrib><creatorcontrib>MacPhee, A.G.</creatorcontrib><creatorcontrib>Pickworth, L.</creatorcontrib><creatorcontrib>Robey, H.F.</creatorcontrib><creatorcontrib>Alfonso, N.</creatorcontrib><creatorcontrib>Baker, K.L.</creatorcontrib><creatorcontrib>Hopkins, L.F. Berzak</creatorcontrib><creatorcontrib>Carlson, L.</creatorcontrib><creatorcontrib>Casey, D.T.</creatorcontrib><creatorcontrib>Clark, D.S.</creatorcontrib><creatorcontrib>Crippen, J.</creatorcontrib><creatorcontrib>Divol, L.</creatorcontrib><creatorcontrib>Döppner, T.</creatorcontrib><creatorcontrib>Edwards, J.</creatorcontrib><creatorcontrib>Farrell, M.</creatorcontrib><creatorcontrib>Felker, S.</creatorcontrib><creatorcontrib>Field, J.E.</creatorcontrib><creatorcontrib>Haan, S.W.</creatorcontrib><creatorcontrib>Hamza, A.V.</creatorcontrib><creatorcontrib>Havre, M.</creatorcontrib><creatorcontrib>Herrmann, M.C.</creatorcontrib><creatorcontrib>Hsing, W.W.</creatorcontrib><creatorcontrib>Khan, S.</creatorcontrib><creatorcontrib>Kline, J.</creatorcontrib><creatorcontrib>Kroll, J.J.</creatorcontrib><creatorcontrib>LePape, S.</creatorcontrib><creatorcontrib>Loomis, E.</creatorcontrib><creatorcontrib>MacGowan, B.J.</creatorcontrib><creatorcontrib>Martinez, D.</creatorcontrib><creatorcontrib>Masse, L.</creatorcontrib><creatorcontrib>Mauldin, M.</creatorcontrib><creatorcontrib>Milovich, J.L.</creatorcontrib><creatorcontrib>Moore, A.S.</creatorcontrib><creatorcontrib>Nikroo, A.</creatorcontrib><creatorcontrib>Pak, A.</creatorcontrib><creatorcontrib>Patel, P.K.</creatorcontrib><creatorcontrib>Peterson, J.L.</creatorcontrib><creatorcontrib>Raman, K.</creatorcontrib><creatorcontrib>Remington, B.A.</creatorcontrib><creatorcontrib>Rice, N.</creatorcontrib><creatorcontrib>Schoff, M.</creatorcontrib><creatorcontrib>Stadermann, M.</creatorcontrib><creatorcontrib>Yi, S.A.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Recent and planned hydrodynamic instability experiments on indirect-drive implosions on the National Ignition Facility</title><title>High energy density physics</title><description>At National Ignition Facility (NIF), yield amplification due to alpha particle heating approached ~3 in the highest performing inertial confinement fusion (ICF) implosions, while yield amplification of ~15-30 is needed for ignition. Hydrodynamic instabilities are a major factor in degradation of implosions while understanding and mitigation of the instabilities are critical to achieving ignition. This article describes recent and planned hydrodynamic instability experiments with several focused platforms that have been developed to directly measure these instabilities in all phases of ICF implosions. Measurements of ripple-shock generation at OMEGA laser have indicated initial seeds for the instabilities in three ablators - plastic (CH), beryllium, and high-density carbon (HDC). Hydrodynamic Growth Radiography (HGR) platform was used to measure instability growth at the ablation front in the acceleration phase of implosions. This platform used pre-imposed 2-D perturbations for growth factor measurements at different perturbation wavelengths and was also used to measure growth of “native roughness” modulations, fill tubes, and capsule support membranes or “tents”. Also, in the acceleration phase several new experimental platforms have been or are being developed to measure instability growth at the ablator-ice interface. In the deceleration phase of implosions, “self-emission” and “self-backlighting” platforms were developed to measure perturbations near peak compression. This article reviews recent progress and results.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><issn>1574-1818</issn><issn>1878-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU_Be9d8tE0DXmTxY2FRED2HNJm6WbppacJi_73p1rOnmcm870vmQeiWkhUltLzfr3Zg-xUjbHogFSNnaEErUWWkKPl56guRZ7Si1SW6CmFPSM4Zowt0_AADPmLtLe5b7T1YvBvt0NnR64Mz2PkQde1aF0cMPz0M7pD0AXc-rawbwMTMDu4I2B36tguu86dl3AF-0zGNusWbb--mFj9rc4q6RheNbgPc_NUl-np--ly_Ztv3l836cZuZnIuY0ULWealtCUVRlsZIYTQjjZGVIDRnpGaFlFxSK2jBpag5kQ1nFSsE1yAaxpfobs7tQnQqGBfB7EyXzjRRUVFymfMkYrPIDF0IAzSqT1fqYVSUqAmv2qsJr5rwqhlvMj3MJkjfPzoYpnTwBmYmynbuP_svhuGEnA</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Smalyuk, V.A.</creator><creator>Weber, C.R.</creator><creator>Landen, O.L.</creator><creator>Ali, S.</creator><creator>Bachmann, B.</creator><creator>Celliers, P.M.</creator><creator>Dewald, E.</creator><creator>Fernandez, A.</creator><creator>Hammel, B.A.</creator><creator>Hall, G.</creator><creator>MacPhee, A.G.</creator><creator>Pickworth, L.</creator><creator>Robey, H.F.</creator><creator>Alfonso, N.</creator><creator>Baker, K.L.</creator><creator>Hopkins, L.F. Berzak</creator><creator>Carlson, L.</creator><creator>Casey, D.T.</creator><creator>Clark, D.S.</creator><creator>Crippen, J.</creator><creator>Divol, L.</creator><creator>Döppner, T.</creator><creator>Edwards, J.</creator><creator>Farrell, M.</creator><creator>Felker, S.</creator><creator>Field, J.E.</creator><creator>Haan, S.W.</creator><creator>Hamza, A.V.</creator><creator>Havre, M.</creator><creator>Herrmann, M.C.</creator><creator>Hsing, W.W.</creator><creator>Khan, S.</creator><creator>Kline, J.</creator><creator>Kroll, J.J.</creator><creator>LePape, S.</creator><creator>Loomis, E.</creator><creator>MacGowan, B.J.</creator><creator>Martinez, D.</creator><creator>Masse, L.</creator><creator>Mauldin, M.</creator><creator>Milovich, J.L.</creator><creator>Moore, A.S.</creator><creator>Nikroo, A.</creator><creator>Pak, A.</creator><creator>Patel, P.K.</creator><creator>Peterson, J.L.</creator><creator>Raman, K.</creator><creator>Remington, B.A.</creator><creator>Rice, N.</creator><creator>Schoff, M.</creator><creator>Stadermann, M.</creator><creator>Yi, S.A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20200801</creationdate><title>Recent and planned hydrodynamic instability experiments on indirect-drive implosions on the National Ignition Facility</title><author>Smalyuk, V.A. ; Weber, C.R. ; Landen, O.L. ; Ali, S. ; Bachmann, B. ; Celliers, P.M. ; Dewald, E. ; Fernandez, A. ; Hammel, B.A. ; Hall, G. ; MacPhee, A.G. ; Pickworth, L. ; Robey, H.F. ; Alfonso, N. ; Baker, K.L. ; Hopkins, L.F. Berzak ; Carlson, L. ; Casey, D.T. ; Clark, D.S. ; Crippen, J. ; Divol, L. ; Döppner, T. ; Edwards, J. ; Farrell, M. ; Felker, S. ; Field, J.E. ; Haan, S.W. ; Hamza, A.V. ; Havre, M. ; Herrmann, M.C. ; Hsing, W.W. ; Khan, S. ; Kline, J. ; Kroll, J.J. ; LePape, S. ; Loomis, E. ; MacGowan, B.J. ; Martinez, D. ; Masse, L. ; Mauldin, M. ; Milovich, J.L. ; Moore, A.S. ; Nikroo, A. ; Pak, A. ; Patel, P.K. ; Peterson, J.L. ; Raman, K. ; Remington, B.A. ; Rice, N. ; Schoff, M. ; Stadermann, M. ; Yi, S.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-159b46ad6e5566cc97ca20fc98701420b2599391d715397b309f3282573ae7f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smalyuk, V.A.</creatorcontrib><creatorcontrib>Weber, C.R.</creatorcontrib><creatorcontrib>Landen, O.L.</creatorcontrib><creatorcontrib>Ali, S.</creatorcontrib><creatorcontrib>Bachmann, B.</creatorcontrib><creatorcontrib>Celliers, P.M.</creatorcontrib><creatorcontrib>Dewald, E.</creatorcontrib><creatorcontrib>Fernandez, A.</creatorcontrib><creatorcontrib>Hammel, B.A.</creatorcontrib><creatorcontrib>Hall, G.</creatorcontrib><creatorcontrib>MacPhee, A.G.</creatorcontrib><creatorcontrib>Pickworth, L.</creatorcontrib><creatorcontrib>Robey, H.F.</creatorcontrib><creatorcontrib>Alfonso, N.</creatorcontrib><creatorcontrib>Baker, K.L.</creatorcontrib><creatorcontrib>Hopkins, L.F. Berzak</creatorcontrib><creatorcontrib>Carlson, L.</creatorcontrib><creatorcontrib>Casey, D.T.</creatorcontrib><creatorcontrib>Clark, D.S.</creatorcontrib><creatorcontrib>Crippen, J.</creatorcontrib><creatorcontrib>Divol, L.</creatorcontrib><creatorcontrib>Döppner, T.</creatorcontrib><creatorcontrib>Edwards, J.</creatorcontrib><creatorcontrib>Farrell, M.</creatorcontrib><creatorcontrib>Felker, S.</creatorcontrib><creatorcontrib>Field, J.E.</creatorcontrib><creatorcontrib>Haan, S.W.</creatorcontrib><creatorcontrib>Hamza, A.V.</creatorcontrib><creatorcontrib>Havre, M.</creatorcontrib><creatorcontrib>Herrmann, M.C.</creatorcontrib><creatorcontrib>Hsing, W.W.</creatorcontrib><creatorcontrib>Khan, S.</creatorcontrib><creatorcontrib>Kline, J.</creatorcontrib><creatorcontrib>Kroll, J.J.</creatorcontrib><creatorcontrib>LePape, S.</creatorcontrib><creatorcontrib>Loomis, E.</creatorcontrib><creatorcontrib>MacGowan, B.J.</creatorcontrib><creatorcontrib>Martinez, D.</creatorcontrib><creatorcontrib>Masse, L.</creatorcontrib><creatorcontrib>Mauldin, M.</creatorcontrib><creatorcontrib>Milovich, J.L.</creatorcontrib><creatorcontrib>Moore, A.S.</creatorcontrib><creatorcontrib>Nikroo, A.</creatorcontrib><creatorcontrib>Pak, A.</creatorcontrib><creatorcontrib>Patel, P.K.</creatorcontrib><creatorcontrib>Peterson, J.L.</creatorcontrib><creatorcontrib>Raman, K.</creatorcontrib><creatorcontrib>Remington, B.A.</creatorcontrib><creatorcontrib>Rice, N.</creatorcontrib><creatorcontrib>Schoff, M.</creatorcontrib><creatorcontrib>Stadermann, M.</creatorcontrib><creatorcontrib>Yi, S.A.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>High energy density physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smalyuk, V.A.</au><au>Weber, C.R.</au><au>Landen, O.L.</au><au>Ali, S.</au><au>Bachmann, B.</au><au>Celliers, P.M.</au><au>Dewald, E.</au><au>Fernandez, A.</au><au>Hammel, B.A.</au><au>Hall, G.</au><au>MacPhee, A.G.</au><au>Pickworth, L.</au><au>Robey, H.F.</au><au>Alfonso, N.</au><au>Baker, K.L.</au><au>Hopkins, L.F. Berzak</au><au>Carlson, L.</au><au>Casey, D.T.</au><au>Clark, D.S.</au><au>Crippen, J.</au><au>Divol, L.</au><au>Döppner, T.</au><au>Edwards, J.</au><au>Farrell, M.</au><au>Felker, S.</au><au>Field, J.E.</au><au>Haan, S.W.</au><au>Hamza, A.V.</au><au>Havre, M.</au><au>Herrmann, M.C.</au><au>Hsing, W.W.</au><au>Khan, S.</au><au>Kline, J.</au><au>Kroll, J.J.</au><au>LePape, S.</au><au>Loomis, E.</au><au>MacGowan, B.J.</au><au>Martinez, D.</au><au>Masse, L.</au><au>Mauldin, M.</au><au>Milovich, J.L.</au><au>Moore, A.S.</au><au>Nikroo, A.</au><au>Pak, A.</au><au>Patel, P.K.</au><au>Peterson, J.L.</au><au>Raman, K.</au><au>Remington, B.A.</au><au>Rice, N.</au><au>Schoff, M.</au><au>Stadermann, M.</au><au>Yi, S.A.</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent and planned hydrodynamic instability experiments on indirect-drive implosions on the National Ignition Facility</atitle><jtitle>High energy density physics</jtitle><date>2020-08-01</date><risdate>2020</risdate><volume>36</volume><issue>na</issue><spage>100820</spage><pages>100820-</pages><artnum>100820</artnum><issn>1574-1818</issn><eissn>1878-0563</eissn><abstract>At National Ignition Facility (NIF), yield amplification due to alpha particle heating approached ~3 in the highest performing inertial confinement fusion (ICF) implosions, while yield amplification of ~15-30 is needed for ignition. Hydrodynamic instabilities are a major factor in degradation of implosions while understanding and mitigation of the instabilities are critical to achieving ignition. This article describes recent and planned hydrodynamic instability experiments with several focused platforms that have been developed to directly measure these instabilities in all phases of ICF implosions. Measurements of ripple-shock generation at OMEGA laser have indicated initial seeds for the instabilities in three ablators - plastic (CH), beryllium, and high-density carbon (HDC). Hydrodynamic Growth Radiography (HGR) platform was used to measure instability growth at the ablation front in the acceleration phase of implosions. This platform used pre-imposed 2-D perturbations for growth factor measurements at different perturbation wavelengths and was also used to measure growth of “native roughness” modulations, fill tubes, and capsule support membranes or “tents”. Also, in the acceleration phase several new experimental platforms have been or are being developed to measure instability growth at the ablator-ice interface. In the deceleration phase of implosions, “self-emission” and “self-backlighting” platforms were developed to measure perturbations near peak compression. This article reviews recent progress and results.</abstract><cop>United States</cop><pub>Elsevier B.V</pub><doi>10.1016/j.hedp.2020.100820</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1574-1818
ispartof High energy density physics, 2020-08, Vol.36 (na), p.100820, Article 100820
issn 1574-1818
1878-0563
language eng
recordid cdi_osti_scitechconnect_1763943
source Elsevier ScienceDirect Journals Complete
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
title Recent and planned hydrodynamic instability experiments on indirect-drive implosions on the National Ignition Facility
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T06%3A25%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20and%20planned%20hydrodynamic%20instability%20experiments%20on%20indirect-drive%20implosions%20on%20the%20National%20Ignition%20Facility&rft.jtitle=High%20energy%20density%20physics&rft.au=Smalyuk,%20V.A.&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2020-08-01&rft.volume=36&rft.issue=na&rft.spage=100820&rft.pages=100820-&rft.artnum=100820&rft.issn=1574-1818&rft.eissn=1878-0563&rft_id=info:doi/10.1016/j.hedp.2020.100820&rft_dat=%3Celsevier_osti_%3ES1574181820300689%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1574181820300689&rfr_iscdi=true