Recent and planned hydrodynamic instability experiments on indirect-drive implosions on the National Ignition Facility
At National Ignition Facility (NIF), yield amplification due to alpha particle heating approached ~3 in the highest performing inertial confinement fusion (ICF) implosions, while yield amplification of ~15-30 is needed for ignition. Hydrodynamic instabilities are a major factor in degradation of imp...
Gespeichert in:
Veröffentlicht in: | High energy density physics 2020-08, Vol.36 (na), p.100820, Article 100820 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | At National Ignition Facility (NIF), yield amplification due to alpha particle heating approached ~3 in the highest performing inertial confinement fusion (ICF) implosions, while yield amplification of ~15-30 is needed for ignition. Hydrodynamic instabilities are a major factor in degradation of implosions while understanding and mitigation of the instabilities are critical to achieving ignition. This article describes recent and planned hydrodynamic instability experiments with several focused platforms that have been developed to directly measure these instabilities in all phases of ICF implosions. Measurements of ripple-shock generation at OMEGA laser have indicated initial seeds for the instabilities in three ablators - plastic (CH), beryllium, and high-density carbon (HDC). Hydrodynamic Growth Radiography (HGR) platform was used to measure instability growth at the ablation front in the acceleration phase of implosions. This platform used pre-imposed 2-D perturbations for growth factor measurements at different perturbation wavelengths and was also used to measure growth of “native roughness” modulations, fill tubes, and capsule support membranes or “tents”. Also, in the acceleration phase several new experimental platforms have been or are being developed to measure instability growth at the ablator-ice interface. In the deceleration phase of implosions, “self-emission” and “self-backlighting” platforms were developed to measure perturbations near peak compression. This article reviews recent progress and results. |
---|---|
ISSN: | 1574-1818 1878-0563 |
DOI: | 10.1016/j.hedp.2020.100820 |