Synchrotron CT imaging of lattice structures with engineered defects
Understanding mechanical failure, crack propagation, and compressive behavior at the micrometer scale is essential for tailoring material properties for structural performance in cellular materials. Typically, modeling of traditional polymer foam materials is clouded by the lack of control in materi...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2020-09, Vol.55 (25), p.11353-11366 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Understanding mechanical failure, crack propagation, and compressive behavior at the micrometer scale is essential for tailoring material properties for structural performance in cellular materials. Typically, modeling of traditional polymer foam materials is clouded by the lack of control in material morphology and its inherent stochastic structure. Additive manufacturing with sub-micrometer resolution provides a direct path for experimenters to specifically tailor structures needed by modelers to explicitly probe mechanical performance. Using laboratory-based 3D X-ray computed tomographic imaging (CT), the examination of deformation and damage provides a critical path to understand how these soft materials behave. Additionally, synchrotron CT yields realistic information at higher strain rates to directly validate the robustness of our finite element modeling. For this study, nanolithographic printing was employed to generate a series of engineered lattices with increasing levels of defects through the random removal of ligaments. These structures were mechanically tested and imaged with laboratory-based microCT. Additionally, synchrotron experiments were conducted in which the structures were imaged in 3D at 14 Hz during compression at a 0.4 s
−1
strain rate. These 3D images show the changes in the structure as the ligaments bend, buckle and fracture in real time. This technique provides a robust framework for developing our methodologies and future exploration of engineered structures. |
---|---|
ISSN: | 0022-2461 1573-4803 |
DOI: | 10.1007/s10853-020-04840-y |