Molecular Lignin Solubility and Structure in Organic Solvents

Lignin, a polymer found in the secondary plant cell wall of terrestrial plants, is the single largest source of renewable aromatics and has attracted considerable attention as a feedstock for potential industrial use. However, the secondary plant cell wall is a crowded environment, and lignin in its...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sustainable chemistry & engineering 2020-12, Vol.8 (48), p.17839-17850
Hauptverfasser: Vermaas, Josh V, Crowley, Michael F, Beckham, Gregg T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17850
container_issue 48
container_start_page 17839
container_title ACS sustainable chemistry & engineering
container_volume 8
creator Vermaas, Josh V
Crowley, Michael F
Beckham, Gregg T
description Lignin, a polymer found in the secondary plant cell wall of terrestrial plants, is the single largest source of renewable aromatics and has attracted considerable attention as a feedstock for potential industrial use. However, the secondary plant cell wall is a crowded environment, and lignin in its native form interacts with other biomass components within a larger network. Application of some organic solvents is known to liberate lignin from this network and creates lignin-rich streams suitable for conversion into target products. Through molecular-scale lignin simulation, we analyze how diverse lignin polymers change their structure in response to varying organic solvent environments. We quantify the relationship between solvent polarity and lignin polymer extension, observing maximum polymer expansion and solvation for solvents with polarity near those of dimethyl sulfoxide. From our observations at the nanoscale, increasing syringyl content within lignin polymers reduces the expansion of the polymer in organic solvent environments and decreases the free energy difference compared to aqueous solvent environments, thereby reducing solubility for high syringyl lignin polymers. The conformational transition rates between lignin polymer shapes increased through a combination of the solvent diffusion constant and polymer extension. The molecular simulations indicate that there is likely no single optimal organic solvent for lignin. Different solvent mixtures have optimal or near-optimal properties in solubilizing lignin polymers, thereby disrupting interactions with other biopolymers.
doi_str_mv 10.1021/acssuschemeng.0c07156
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1762463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a567639830</sourcerecordid><originalsourceid>FETCH-LOGICAL-a369t-28a31c7be3fd04dbc306352d5769b1d350854ea9e48facd0585ef5fb9f0dccf83</originalsourceid><addsrcrecordid>eNqFkM1qwzAQhEVpoSHNIxRM704ly5LlQw8l9A9cckh7FvJKchQcuUhyIW9fh-TQnrqXXZiZhfkQuiV4SXBB7hXEOEbYmr3x3RIDrgjjF2hWEC5yXAp2-eu-RosYd3iauqaFIDP08D70BsZehaxxnXc-2wz92LrepUOmvM42KYyQxmCySVuHTnkHR8-38SneoCur-mgW5z1Hn89PH6vXvFm_vK0em1xRXqe8EIoSqFpDrcalboFiTlmhWcXrlmjKsGClUbUphVWgMRPMWGbb2mINYAWdo7vT3yEmJyO4ZGALg_cGkiQVL0pOJxM7mSAMMQZj5VdwexUOkmB5ZCX_sJJnVlOOnHKTLHfDGPxU5Z_MD2WfcoU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molecular Lignin Solubility and Structure in Organic Solvents</title><source>ACS Publications</source><creator>Vermaas, Josh V ; Crowley, Michael F ; Beckham, Gregg T</creator><creatorcontrib>Vermaas, Josh V ; Crowley, Michael F ; Beckham, Gregg T ; National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><description>Lignin, a polymer found in the secondary plant cell wall of terrestrial plants, is the single largest source of renewable aromatics and has attracted considerable attention as a feedstock for potential industrial use. However, the secondary plant cell wall is a crowded environment, and lignin in its native form interacts with other biomass components within a larger network. Application of some organic solvents is known to liberate lignin from this network and creates lignin-rich streams suitable for conversion into target products. Through molecular-scale lignin simulation, we analyze how diverse lignin polymers change their structure in response to varying organic solvent environments. We quantify the relationship between solvent polarity and lignin polymer extension, observing maximum polymer expansion and solvation for solvents with polarity near those of dimethyl sulfoxide. From our observations at the nanoscale, increasing syringyl content within lignin polymers reduces the expansion of the polymer in organic solvent environments and decreases the free energy difference compared to aqueous solvent environments, thereby reducing solubility for high syringyl lignin polymers. The conformational transition rates between lignin polymer shapes increased through a combination of the solvent diffusion constant and polymer extension. The molecular simulations indicate that there is likely no single optimal organic solvent for lignin. Different solvent mixtures have optimal or near-optimal properties in solubilizing lignin polymers, thereby disrupting interactions with other biopolymers.</description><identifier>ISSN: 2168-0485</identifier><identifier>EISSN: 2168-0485</identifier><identifier>DOI: 10.1021/acssuschemeng.0c07156</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>empirical solvent polarity ; free energy ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; lignin solvation ; molecular simulation ; polymer-solvent interactions</subject><ispartof>ACS sustainable chemistry &amp; engineering, 2020-12, Vol.8 (48), p.17839-17850</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a369t-28a31c7be3fd04dbc306352d5769b1d350854ea9e48facd0585ef5fb9f0dccf83</citedby><cites>FETCH-LOGICAL-a369t-28a31c7be3fd04dbc306352d5769b1d350854ea9e48facd0585ef5fb9f0dccf83</cites><orcidid>0000-0003-3139-6469 ; 0000-0002-3480-212X ; 0000-0001-5163-9398 ; 0000000331396469 ; 0000000151639398 ; 000000023480212X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssuschemeng.0c07156$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssuschemeng.0c07156$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1762463$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Vermaas, Josh V</creatorcontrib><creatorcontrib>Crowley, Michael F</creatorcontrib><creatorcontrib>Beckham, Gregg T</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><title>Molecular Lignin Solubility and Structure in Organic Solvents</title><title>ACS sustainable chemistry &amp; engineering</title><addtitle>ACS Sustainable Chem. Eng</addtitle><description>Lignin, a polymer found in the secondary plant cell wall of terrestrial plants, is the single largest source of renewable aromatics and has attracted considerable attention as a feedstock for potential industrial use. However, the secondary plant cell wall is a crowded environment, and lignin in its native form interacts with other biomass components within a larger network. Application of some organic solvents is known to liberate lignin from this network and creates lignin-rich streams suitable for conversion into target products. Through molecular-scale lignin simulation, we analyze how diverse lignin polymers change their structure in response to varying organic solvent environments. We quantify the relationship between solvent polarity and lignin polymer extension, observing maximum polymer expansion and solvation for solvents with polarity near those of dimethyl sulfoxide. From our observations at the nanoscale, increasing syringyl content within lignin polymers reduces the expansion of the polymer in organic solvent environments and decreases the free energy difference compared to aqueous solvent environments, thereby reducing solubility for high syringyl lignin polymers. The conformational transition rates between lignin polymer shapes increased through a combination of the solvent diffusion constant and polymer extension. The molecular simulations indicate that there is likely no single optimal organic solvent for lignin. Different solvent mixtures have optimal or near-optimal properties in solubilizing lignin polymers, thereby disrupting interactions with other biopolymers.</description><subject>empirical solvent polarity</subject><subject>free energy</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>lignin solvation</subject><subject>molecular simulation</subject><subject>polymer-solvent interactions</subject><issn>2168-0485</issn><issn>2168-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM1qwzAQhEVpoSHNIxRM704ly5LlQw8l9A9cckh7FvJKchQcuUhyIW9fh-TQnrqXXZiZhfkQuiV4SXBB7hXEOEbYmr3x3RIDrgjjF2hWEC5yXAp2-eu-RosYd3iauqaFIDP08D70BsZehaxxnXc-2wz92LrepUOmvM42KYyQxmCySVuHTnkHR8-38SneoCur-mgW5z1Hn89PH6vXvFm_vK0em1xRXqe8EIoSqFpDrcalboFiTlmhWcXrlmjKsGClUbUphVWgMRPMWGbb2mINYAWdo7vT3yEmJyO4ZGALg_cGkiQVL0pOJxM7mSAMMQZj5VdwexUOkmB5ZCX_sJJnVlOOnHKTLHfDGPxU5Z_MD2WfcoU</recordid><startdate>20201207</startdate><enddate>20201207</enddate><creator>Vermaas, Josh V</creator><creator>Crowley, Michael F</creator><creator>Beckham, Gregg T</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3139-6469</orcidid><orcidid>https://orcid.org/0000-0002-3480-212X</orcidid><orcidid>https://orcid.org/0000-0001-5163-9398</orcidid><orcidid>https://orcid.org/0000000331396469</orcidid><orcidid>https://orcid.org/0000000151639398</orcidid><orcidid>https://orcid.org/000000023480212X</orcidid></search><sort><creationdate>20201207</creationdate><title>Molecular Lignin Solubility and Structure in Organic Solvents</title><author>Vermaas, Josh V ; Crowley, Michael F ; Beckham, Gregg T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a369t-28a31c7be3fd04dbc306352d5769b1d350854ea9e48facd0585ef5fb9f0dccf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>empirical solvent polarity</topic><topic>free energy</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>lignin solvation</topic><topic>molecular simulation</topic><topic>polymer-solvent interactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vermaas, Josh V</creatorcontrib><creatorcontrib>Crowley, Michael F</creatorcontrib><creatorcontrib>Beckham, Gregg T</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS sustainable chemistry &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vermaas, Josh V</au><au>Crowley, Michael F</au><au>Beckham, Gregg T</au><aucorp>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Lignin Solubility and Structure in Organic Solvents</atitle><jtitle>ACS sustainable chemistry &amp; engineering</jtitle><addtitle>ACS Sustainable Chem. Eng</addtitle><date>2020-12-07</date><risdate>2020</risdate><volume>8</volume><issue>48</issue><spage>17839</spage><epage>17850</epage><pages>17839-17850</pages><issn>2168-0485</issn><eissn>2168-0485</eissn><abstract>Lignin, a polymer found in the secondary plant cell wall of terrestrial plants, is the single largest source of renewable aromatics and has attracted considerable attention as a feedstock for potential industrial use. However, the secondary plant cell wall is a crowded environment, and lignin in its native form interacts with other biomass components within a larger network. Application of some organic solvents is known to liberate lignin from this network and creates lignin-rich streams suitable for conversion into target products. Through molecular-scale lignin simulation, we analyze how diverse lignin polymers change their structure in response to varying organic solvent environments. We quantify the relationship between solvent polarity and lignin polymer extension, observing maximum polymer expansion and solvation for solvents with polarity near those of dimethyl sulfoxide. From our observations at the nanoscale, increasing syringyl content within lignin polymers reduces the expansion of the polymer in organic solvent environments and decreases the free energy difference compared to aqueous solvent environments, thereby reducing solubility for high syringyl lignin polymers. The conformational transition rates between lignin polymer shapes increased through a combination of the solvent diffusion constant and polymer extension. The molecular simulations indicate that there is likely no single optimal organic solvent for lignin. Different solvent mixtures have optimal or near-optimal properties in solubilizing lignin polymers, thereby disrupting interactions with other biopolymers.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acssuschemeng.0c07156</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3139-6469</orcidid><orcidid>https://orcid.org/0000-0002-3480-212X</orcidid><orcidid>https://orcid.org/0000-0001-5163-9398</orcidid><orcidid>https://orcid.org/0000000331396469</orcidid><orcidid>https://orcid.org/0000000151639398</orcidid><orcidid>https://orcid.org/000000023480212X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2168-0485
ispartof ACS sustainable chemistry & engineering, 2020-12, Vol.8 (48), p.17839-17850
issn 2168-0485
2168-0485
language eng
recordid cdi_osti_scitechconnect_1762463
source ACS Publications
subjects empirical solvent polarity
free energy
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
lignin solvation
molecular simulation
polymer-solvent interactions
title Molecular Lignin Solubility and Structure in Organic Solvents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A35%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Lignin%20Solubility%20and%20Structure%20in%20Organic%20Solvents&rft.jtitle=ACS%20sustainable%20chemistry%20&%20engineering&rft.au=Vermaas,%20Josh%20V&rft.aucorp=National%20Renewable%20Energy%20Laboratory%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2020-12-07&rft.volume=8&rft.issue=48&rft.spage=17839&rft.epage=17850&rft.pages=17839-17850&rft.issn=2168-0485&rft.eissn=2168-0485&rft_id=info:doi/10.1021/acssuschemeng.0c07156&rft_dat=%3Cacs_osti_%3Ea567639830%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true