Molecular Lignin Solubility and Structure in Organic Solvents
Lignin, a polymer found in the secondary plant cell wall of terrestrial plants, is the single largest source of renewable aromatics and has attracted considerable attention as a feedstock for potential industrial use. However, the secondary plant cell wall is a crowded environment, and lignin in its...
Gespeichert in:
Veröffentlicht in: | ACS sustainable chemistry & engineering 2020-12, Vol.8 (48), p.17839-17850 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17850 |
---|---|
container_issue | 48 |
container_start_page | 17839 |
container_title | ACS sustainable chemistry & engineering |
container_volume | 8 |
creator | Vermaas, Josh V Crowley, Michael F Beckham, Gregg T |
description | Lignin, a polymer found in the secondary plant cell wall of terrestrial plants, is the single largest source of renewable aromatics and has attracted considerable attention as a feedstock for potential industrial use. However, the secondary plant cell wall is a crowded environment, and lignin in its native form interacts with other biomass components within a larger network. Application of some organic solvents is known to liberate lignin from this network and creates lignin-rich streams suitable for conversion into target products. Through molecular-scale lignin simulation, we analyze how diverse lignin polymers change their structure in response to varying organic solvent environments. We quantify the relationship between solvent polarity and lignin polymer extension, observing maximum polymer expansion and solvation for solvents with polarity near those of dimethyl sulfoxide. From our observations at the nanoscale, increasing syringyl content within lignin polymers reduces the expansion of the polymer in organic solvent environments and decreases the free energy difference compared to aqueous solvent environments, thereby reducing solubility for high syringyl lignin polymers. The conformational transition rates between lignin polymer shapes increased through a combination of the solvent diffusion constant and polymer extension. The molecular simulations indicate that there is likely no single optimal organic solvent for lignin. Different solvent mixtures have optimal or near-optimal properties in solubilizing lignin polymers, thereby disrupting interactions with other biopolymers. |
doi_str_mv | 10.1021/acssuschemeng.0c07156 |
format | Article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1762463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a567639830</sourcerecordid><originalsourceid>FETCH-LOGICAL-a369t-28a31c7be3fd04dbc306352d5769b1d350854ea9e48facd0585ef5fb9f0dccf83</originalsourceid><addsrcrecordid>eNqFkM1qwzAQhEVpoSHNIxRM704ly5LlQw8l9A9cckh7FvJKchQcuUhyIW9fh-TQnrqXXZiZhfkQuiV4SXBB7hXEOEbYmr3x3RIDrgjjF2hWEC5yXAp2-eu-RosYd3iauqaFIDP08D70BsZehaxxnXc-2wz92LrepUOmvM42KYyQxmCySVuHTnkHR8-38SneoCur-mgW5z1Hn89PH6vXvFm_vK0em1xRXqe8EIoSqFpDrcalboFiTlmhWcXrlmjKsGClUbUphVWgMRPMWGbb2mINYAWdo7vT3yEmJyO4ZGALg_cGkiQVL0pOJxM7mSAMMQZj5VdwexUOkmB5ZCX_sJJnVlOOnHKTLHfDGPxU5Z_MD2WfcoU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molecular Lignin Solubility and Structure in Organic Solvents</title><source>ACS Publications</source><creator>Vermaas, Josh V ; Crowley, Michael F ; Beckham, Gregg T</creator><creatorcontrib>Vermaas, Josh V ; Crowley, Michael F ; Beckham, Gregg T ; National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><description>Lignin, a polymer found in the secondary plant cell wall of terrestrial plants, is the single largest source of renewable aromatics and has attracted considerable attention as a feedstock for potential industrial use. However, the secondary plant cell wall is a crowded environment, and lignin in its native form interacts with other biomass components within a larger network. Application of some organic solvents is known to liberate lignin from this network and creates lignin-rich streams suitable for conversion into target products. Through molecular-scale lignin simulation, we analyze how diverse lignin polymers change their structure in response to varying organic solvent environments. We quantify the relationship between solvent polarity and lignin polymer extension, observing maximum polymer expansion and solvation for solvents with polarity near those of dimethyl sulfoxide. From our observations at the nanoscale, increasing syringyl content within lignin polymers reduces the expansion of the polymer in organic solvent environments and decreases the free energy difference compared to aqueous solvent environments, thereby reducing solubility for high syringyl lignin polymers. The conformational transition rates between lignin polymer shapes increased through a combination of the solvent diffusion constant and polymer extension. The molecular simulations indicate that there is likely no single optimal organic solvent for lignin. Different solvent mixtures have optimal or near-optimal properties in solubilizing lignin polymers, thereby disrupting interactions with other biopolymers.</description><identifier>ISSN: 2168-0485</identifier><identifier>EISSN: 2168-0485</identifier><identifier>DOI: 10.1021/acssuschemeng.0c07156</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>empirical solvent polarity ; free energy ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; lignin solvation ; molecular simulation ; polymer-solvent interactions</subject><ispartof>ACS sustainable chemistry & engineering, 2020-12, Vol.8 (48), p.17839-17850</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a369t-28a31c7be3fd04dbc306352d5769b1d350854ea9e48facd0585ef5fb9f0dccf83</citedby><cites>FETCH-LOGICAL-a369t-28a31c7be3fd04dbc306352d5769b1d350854ea9e48facd0585ef5fb9f0dccf83</cites><orcidid>0000-0003-3139-6469 ; 0000-0002-3480-212X ; 0000-0001-5163-9398 ; 0000000331396469 ; 0000000151639398 ; 000000023480212X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssuschemeng.0c07156$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssuschemeng.0c07156$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1762463$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Vermaas, Josh V</creatorcontrib><creatorcontrib>Crowley, Michael F</creatorcontrib><creatorcontrib>Beckham, Gregg T</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><title>Molecular Lignin Solubility and Structure in Organic Solvents</title><title>ACS sustainable chemistry & engineering</title><addtitle>ACS Sustainable Chem. Eng</addtitle><description>Lignin, a polymer found in the secondary plant cell wall of terrestrial plants, is the single largest source of renewable aromatics and has attracted considerable attention as a feedstock for potential industrial use. However, the secondary plant cell wall is a crowded environment, and lignin in its native form interacts with other biomass components within a larger network. Application of some organic solvents is known to liberate lignin from this network and creates lignin-rich streams suitable for conversion into target products. Through molecular-scale lignin simulation, we analyze how diverse lignin polymers change their structure in response to varying organic solvent environments. We quantify the relationship between solvent polarity and lignin polymer extension, observing maximum polymer expansion and solvation for solvents with polarity near those of dimethyl sulfoxide. From our observations at the nanoscale, increasing syringyl content within lignin polymers reduces the expansion of the polymer in organic solvent environments and decreases the free energy difference compared to aqueous solvent environments, thereby reducing solubility for high syringyl lignin polymers. The conformational transition rates between lignin polymer shapes increased through a combination of the solvent diffusion constant and polymer extension. The molecular simulations indicate that there is likely no single optimal organic solvent for lignin. Different solvent mixtures have optimal or near-optimal properties in solubilizing lignin polymers, thereby disrupting interactions with other biopolymers.</description><subject>empirical solvent polarity</subject><subject>free energy</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>lignin solvation</subject><subject>molecular simulation</subject><subject>polymer-solvent interactions</subject><issn>2168-0485</issn><issn>2168-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM1qwzAQhEVpoSHNIxRM704ly5LlQw8l9A9cckh7FvJKchQcuUhyIW9fh-TQnrqXXZiZhfkQuiV4SXBB7hXEOEbYmr3x3RIDrgjjF2hWEC5yXAp2-eu-RosYd3iauqaFIDP08D70BsZehaxxnXc-2wz92LrepUOmvM42KYyQxmCySVuHTnkHR8-38SneoCur-mgW5z1Hn89PH6vXvFm_vK0em1xRXqe8EIoSqFpDrcalboFiTlmhWcXrlmjKsGClUbUphVWgMRPMWGbb2mINYAWdo7vT3yEmJyO4ZGALg_cGkiQVL0pOJxM7mSAMMQZj5VdwexUOkmB5ZCX_sJJnVlOOnHKTLHfDGPxU5Z_MD2WfcoU</recordid><startdate>20201207</startdate><enddate>20201207</enddate><creator>Vermaas, Josh V</creator><creator>Crowley, Michael F</creator><creator>Beckham, Gregg T</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3139-6469</orcidid><orcidid>https://orcid.org/0000-0002-3480-212X</orcidid><orcidid>https://orcid.org/0000-0001-5163-9398</orcidid><orcidid>https://orcid.org/0000000331396469</orcidid><orcidid>https://orcid.org/0000000151639398</orcidid><orcidid>https://orcid.org/000000023480212X</orcidid></search><sort><creationdate>20201207</creationdate><title>Molecular Lignin Solubility and Structure in Organic Solvents</title><author>Vermaas, Josh V ; Crowley, Michael F ; Beckham, Gregg T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a369t-28a31c7be3fd04dbc306352d5769b1d350854ea9e48facd0585ef5fb9f0dccf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>empirical solvent polarity</topic><topic>free energy</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>lignin solvation</topic><topic>molecular simulation</topic><topic>polymer-solvent interactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vermaas, Josh V</creatorcontrib><creatorcontrib>Crowley, Michael F</creatorcontrib><creatorcontrib>Beckham, Gregg T</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS sustainable chemistry & engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vermaas, Josh V</au><au>Crowley, Michael F</au><au>Beckham, Gregg T</au><aucorp>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Lignin Solubility and Structure in Organic Solvents</atitle><jtitle>ACS sustainable chemistry & engineering</jtitle><addtitle>ACS Sustainable Chem. Eng</addtitle><date>2020-12-07</date><risdate>2020</risdate><volume>8</volume><issue>48</issue><spage>17839</spage><epage>17850</epage><pages>17839-17850</pages><issn>2168-0485</issn><eissn>2168-0485</eissn><abstract>Lignin, a polymer found in the secondary plant cell wall of terrestrial plants, is the single largest source of renewable aromatics and has attracted considerable attention as a feedstock for potential industrial use. However, the secondary plant cell wall is a crowded environment, and lignin in its native form interacts with other biomass components within a larger network. Application of some organic solvents is known to liberate lignin from this network and creates lignin-rich streams suitable for conversion into target products. Through molecular-scale lignin simulation, we analyze how diverse lignin polymers change their structure in response to varying organic solvent environments. We quantify the relationship between solvent polarity and lignin polymer extension, observing maximum polymer expansion and solvation for solvents with polarity near those of dimethyl sulfoxide. From our observations at the nanoscale, increasing syringyl content within lignin polymers reduces the expansion of the polymer in organic solvent environments and decreases the free energy difference compared to aqueous solvent environments, thereby reducing solubility for high syringyl lignin polymers. The conformational transition rates between lignin polymer shapes increased through a combination of the solvent diffusion constant and polymer extension. The molecular simulations indicate that there is likely no single optimal organic solvent for lignin. Different solvent mixtures have optimal or near-optimal properties in solubilizing lignin polymers, thereby disrupting interactions with other biopolymers.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acssuschemeng.0c07156</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3139-6469</orcidid><orcidid>https://orcid.org/0000-0002-3480-212X</orcidid><orcidid>https://orcid.org/0000-0001-5163-9398</orcidid><orcidid>https://orcid.org/0000000331396469</orcidid><orcidid>https://orcid.org/0000000151639398</orcidid><orcidid>https://orcid.org/000000023480212X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-0485 |
ispartof | ACS sustainable chemistry & engineering, 2020-12, Vol.8 (48), p.17839-17850 |
issn | 2168-0485 2168-0485 |
language | eng |
recordid | cdi_osti_scitechconnect_1762463 |
source | ACS Publications |
subjects | empirical solvent polarity free energy INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY lignin solvation molecular simulation polymer-solvent interactions |
title | Molecular Lignin Solubility and Structure in Organic Solvents |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A35%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Lignin%20Solubility%20and%20Structure%20in%20Organic%20Solvents&rft.jtitle=ACS%20sustainable%20chemistry%20&%20engineering&rft.au=Vermaas,%20Josh%20V&rft.aucorp=National%20Renewable%20Energy%20Laboratory%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2020-12-07&rft.volume=8&rft.issue=48&rft.spage=17839&rft.epage=17850&rft.pages=17839-17850&rft.issn=2168-0485&rft.eissn=2168-0485&rft_id=info:doi/10.1021/acssuschemeng.0c07156&rft_dat=%3Cacs_osti_%3Ea567639830%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |