Molecular Lignin Solubility and Structure in Organic Solvents

Lignin, a polymer found in the secondary plant cell wall of terrestrial plants, is the single largest source of renewable aromatics and has attracted considerable attention as a feedstock for potential industrial use. However, the secondary plant cell wall is a crowded environment, and lignin in its...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sustainable chemistry & engineering 2020-12, Vol.8 (48), p.17839-17850
Hauptverfasser: Vermaas, Josh V, Crowley, Michael F, Beckham, Gregg T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lignin, a polymer found in the secondary plant cell wall of terrestrial plants, is the single largest source of renewable aromatics and has attracted considerable attention as a feedstock for potential industrial use. However, the secondary plant cell wall is a crowded environment, and lignin in its native form interacts with other biomass components within a larger network. Application of some organic solvents is known to liberate lignin from this network and creates lignin-rich streams suitable for conversion into target products. Through molecular-scale lignin simulation, we analyze how diverse lignin polymers change their structure in response to varying organic solvent environments. We quantify the relationship between solvent polarity and lignin polymer extension, observing maximum polymer expansion and solvation for solvents with polarity near those of dimethyl sulfoxide. From our observations at the nanoscale, increasing syringyl content within lignin polymers reduces the expansion of the polymer in organic solvent environments and decreases the free energy difference compared to aqueous solvent environments, thereby reducing solubility for high syringyl lignin polymers. The conformational transition rates between lignin polymer shapes increased through a combination of the solvent diffusion constant and polymer extension. The molecular simulations indicate that there is likely no single optimal organic solvent for lignin. Different solvent mixtures have optimal or near-optimal properties in solubilizing lignin polymers, thereby disrupting interactions with other biopolymers.
ISSN:2168-0485
2168-0485
DOI:10.1021/acssuschemeng.0c07156