Table-Top X-ray Spectroscopy of Benzene Radical Cation
Herein, ultrafast table-top X-ray spectroscopy at the carbon K-edge is used to measure the X-ray spectral features of benzene radical cations (Bz+). The ground state of the cation is prepared selectively by two-photon ionization of neutral benzene, and the X-ray spectra are probed at early times aft...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2020-10, Vol.124 (46) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Herein, ultrafast table-top X-ray spectroscopy at the carbon K-edge is used to measure the X-ray spectral features of benzene radical cations (Bz+). The ground state of the cation is prepared selectively by two-photon ionization of neutral benzene, and the X-ray spectra are probed at early times after the ionization by transient absorption using X-rays produced by high harmonic generation (HHG). Bz+ is well-known to undergo Jahn-Teller distortion, leading to a lower symmetry and splitting of the π orbitals. Comparison of the X-ray absorption spectra of the neutral and the cation reveals a splitting of the two degenerate π* orbitals as well as an appearance of a new peak due to excitation to the partially occupied π-subshell. The π* orbital splitting of the cation, elucidated on the basis of high-level calculations in a companion theoretical paper, is discovered to be due to both the symmetry distortion and even more dominant spin coupling of the unpaired electron in the partially vacant π orbital (from ionization) with the unpaired electrons resulting from the transition from the 1sC core orbital to the fully vacant π* orbitals. |
---|---|
ISSN: | 1089-5639 1520-5215 |