Encoding the complete electric field of an ultraviolet ultrashort laser pulse in a near-infrared nonlinear-optical signal
We introduce a variation on the cross-correlation frequency-resolved optical gating (XFROG) technique that uses a near-infrared (NIR) nonlinear-optical signal to characterize pulses in the ultraviolet (UV). Using a transient-grating XFROG beam geometry, we create a grating using two copies of the un...
Gespeichert in:
Veröffentlicht in: | Optics express 2020-08, Vol.28 (18), p.26850-26860 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a variation on the cross-correlation frequency-resolved optical gating (XFROG) technique that uses a near-infrared (NIR) nonlinear-optical signal to characterize pulses in the ultraviolet (UV). Using a transient-grating XFROG beam geometry, we create a grating using two copies of the unknown UV pulse and diffract a NIR reference pulse from it. We show that, by varying the delay between the UV pulses creating the grating, the UV pulse intensity-and-phase information can be encoded into a NIR signal. We also implemented a modified generalized-projections phase-retrieval algorithm for retrieving the UV pulses from these spectrograms. We performed proof-of-principle measurements of chirped pulses and double pulses, all at 400 nm. This approach should be extendable deeper into the UV and potentially even into the extreme UV or x-ray range. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.402025 |