Direct observation of two-dimensional magnons in atomically thin CrI3

Magnons are collective spin excitations in crystals with long-range magnetic order. The emergent van der Waals magnets 1 – 3 provide a highly tunable platform to explore magnetic excitations in the two-dimensional limit with intriguing properties, manifesting from their honeycomb lattice structure a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2021-01, Vol.17 (1), p.20-25
Hauptverfasser: Cenker, John, Huang, Bevin, Suri, Nishchay, Thijssen, Pearl, Miller, Aaron, Song, Tiancheng, Taniguchi, Takashi, Watanabe, Kenji, McGuire, Michael A., Xiao, Di, Xu, Xiaodong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Magnons are collective spin excitations in crystals with long-range magnetic order. The emergent van der Waals magnets 1 – 3 provide a highly tunable platform to explore magnetic excitations in the two-dimensional limit with intriguing properties, manifesting from their honeycomb lattice structure and switchable magnetic configurations. Here, we report the direct observation of two-dimensional magnons through magneto-Raman spectroscopy with optical selection rules determined by the interplay between crystal symmetry, layer number and magnetic states in atomically thin CrI 3 . In monolayers, we observe an acoustic magnon mode at ~0.3 meV. It has strict cross-circularly polarized selection rules locked to the magnetization direction that originates from the conservation of angular momentum of photons and magnons dictated by three-fold rotational symmetry 4 . Additionally, we reveal optical magnon modes at ~17 meV. This mode is Raman silent in monolayers, but optically active in bilayers and bulk due to a relaxation of the parity criterion resulting from the layer index. In the layered antiferromagnetic states, we directly resolve two degenerate optical magnon modes with opposite angular momentum and conjugate optical selection rules. From these measurements, we quantitatively extract the spin-wave gap, magnetic anisotropy and intralayer and interlayer exchange constants, and establish two-dimensional magnets as a new platform for exploring magnon physics. Magnons are collective excitations that dictate many of a magnet’s low-temperature properties. By means of Raman scattering, the magnon spectra of CrI 3 are measured in the monolayer limit.
ISSN:1745-2473
1745-2481
DOI:10.1038/s41567-020-0999-1