Enhanced nitrate reduction in water by a combined bio-electrochemical system of microbial fuel cells and submerged aquatic plant Ceratophyllum demersum

High nitrate (NO3−) loading in water bodies is a crucial factor inducing the eutrophication of lakes. We tried to enhance NO3− reduction in overlying water by coupling sediment microbial fuel cells (SMFCs) with submerged aquatic plant Ceratophyllum demersum. A comparative study was conducted by sett...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental sciences (China) 2019-04, Vol.78 (C), p.338-351
Hauptverfasser: Xu, Peng, Xiao, Enrong, Wu, Junmei, He, Feng, Zhang, Yi, Wu, Zhenbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High nitrate (NO3−) loading in water bodies is a crucial factor inducing the eutrophication of lakes. We tried to enhance NO3− reduction in overlying water by coupling sediment microbial fuel cells (SMFCs) with submerged aquatic plant Ceratophyllum demersum. A comparative study was conducted by setting four treatments: open-circuit SMFC (Control), closed-circuit SMFC (SMFC-c), open-circuit SMFC with C. demersum (Plant), and closed-circuit SMFC with C. demersum (P-SMFC-c). The electrochemical parameters were documented to illustrate the bio-electrochemical characteristics of SMFC-c and P-SMFC-c. Removal pathways of NO3− in different treatments were studied by adding quantitative 15NO3− to water column. The results showed that the cathodic reaction in SMFC-c was mainly catalyzed by aerobic organisms attached on the cathode, including algae, Pseudomonas, Bacillus, and Albidiferax. The oxygen secreted by plants significantly improved the power generation of SMFC-c. Both electrogenesis and plants enhanced the complete removal of NO3− from the sediment–water system. The complete removal rates of added 15N increased by 17.6% and 10.2% for SMFC-c and plant, respectively, when compared with control at the end of experiment. The electrochemical/heterotrophic and aerobic denitrification on cathodes mainly drove the higher reduction of NO3− in SMFC-c and plant, respectively. The coexistence of electrogenesis and plants further increased the complete removal of NO3− with a rate of 23.1%. The heterotrophic and aerobic denitrifications were simultaneously promoted with a highest abundance of Flavobacterium, Bacillus, Geobacter, Pseudomonas, Rhodobacter, and Arenimonas on the cathode. [Display omitted]
ISSN:1001-0742
1878-7320
DOI:10.1016/j.jes.2018.11.013