Clean 2D superconductivity in a bulk van der Waals superlattice
Single layers of transition metal dichalcogenides exhibit exotic properties, including superconductivity. The usual route to obtaining such samples is to exfoliate a three-dimensional (3D) crystal. Devarakonda et al. instead grew a superlattice comprising alternating layers of the transition metal d...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2020-10, Vol.370 (6513), p.231-236 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 236 |
---|---|
container_issue | 6513 |
container_start_page | 231 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 370 |
creator | Devarakonda, A. Inoue, H. Fang, S. Ozsoy-Keskinbora, C. Suzuki, T. Kriener, M. Fu, L. Kaxiras, E. Bell, D. C. Checkelsky, J. G. |
description | Single layers of transition metal dichalcogenides exhibit exotic properties, including superconductivity. The usual route to obtaining such samples is to exfoliate a three-dimensional (3D) crystal. Devarakonda
et al.
instead grew a superlattice comprising alternating layers of the transition metal dichalcogenide hexagonal NbS
2
and the material Ba
3
NbS
5
(see the Perspective by Schoop). The inert Ba
3
NbS
5
layers serve to dissociate the superconducting NbS
2
layers from one another, resulting in 2D superconductivity with high carrier mobility. The combination of high mobility and reduced dimensionality may give rise to exotic quantum phases.
Science
, this issue p.
231
see also p.
170
A superlattice of alternating layers of
H
-NbS
2
and Ba
3
NbS
5
exhibits 2D superconductivity and high carrier mobility.
Advances in low-dimensional superconductivity are often realized through improvements in material quality. Apart from a small group of organic materials, there is a near absence of clean-limit two-dimensional (2D) superconductors, which presents an impediment to the pursuit of numerous long-standing predictions for exotic superconductivity with fragile pairing symmetries. We developed a bulk superlattice consisting of the transition metal dichalcogenide (TMD) superconductor 2
H
-niobium disulfide (2
H
-NbS
2
) and a commensurate block layer that yields enhanced two-dimensionality, high electronic quality, and clean-limit inorganic 2D superconductivity. The structure of this material may naturally be extended to generate a distinct family of 2D superconductors, topological insulators, and excitonic systems based on TMDs with improved material properties. |
doi_str_mv | 10.1126/science.aaz6643 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1693567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2449501722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-191129fd8156cd95bc8acbf1cdae4b568f86739d2934c8fb5b09c70004df72383</originalsourceid><addsrcrecordid>eNpd0M1LwzAYBvAgCs7p2WvRi5du-WjS5iSy-QUDL4rHkL5NMbNLZ5IO5l9vtDt5CiS_Nzzvg9AlwTNCqJgHsMaBmWn9LUTBjtCEYMlzSTE7RhOMmcgrXPJTdBbCGuP0JtkE3S46o11Gl1kYtsZD75oBot3ZuM-sy3RWD91ntkukMT5717oLo-x0jBbMOTpp0525OJxT9PZw_7p4ylcvj8-Lu1UOTPKYE5kyyrapCBfQSF5DpaFuCTTaFDUXVVuJksmGSlZA1da8xhLKlLJo2pKyik3R1fhvH6JVaddo4COldQaiIkIynuan6GZEW99_DSZEtbEBTNdpZ_ohKFoUUnImCpzo9T-67gfv0gp_imNSUprUfFTg-xC8adXW2432e0Ww-m1dHVpXh9bZD24vdfw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449501722</pqid></control><display><type>article</type><title>Clean 2D superconductivity in a bulk van der Waals superlattice</title><source>Science Magazine</source><creator>Devarakonda, A. ; Inoue, H. ; Fang, S. ; Ozsoy-Keskinbora, C. ; Suzuki, T. ; Kriener, M. ; Fu, L. ; Kaxiras, E. ; Bell, D. C. ; Checkelsky, J. G.</creator><creatorcontrib>Devarakonda, A. ; Inoue, H. ; Fang, S. ; Ozsoy-Keskinbora, C. ; Suzuki, T. ; Kriener, M. ; Fu, L. ; Kaxiras, E. ; Bell, D. C. ; Checkelsky, J. G.</creatorcontrib><description>Single layers of transition metal dichalcogenides exhibit exotic properties, including superconductivity. The usual route to obtaining such samples is to exfoliate a three-dimensional (3D) crystal. Devarakonda
et al.
instead grew a superlattice comprising alternating layers of the transition metal dichalcogenide hexagonal NbS
2
and the material Ba
3
NbS
5
(see the Perspective by Schoop). The inert Ba
3
NbS
5
layers serve to dissociate the superconducting NbS
2
layers from one another, resulting in 2D superconductivity with high carrier mobility. The combination of high mobility and reduced dimensionality may give rise to exotic quantum phases.
Science
, this issue p.
231
see also p.
170
A superlattice of alternating layers of
H
-NbS
2
and Ba
3
NbS
5
exhibits 2D superconductivity and high carrier mobility.
Advances in low-dimensional superconductivity are often realized through improvements in material quality. Apart from a small group of organic materials, there is a near absence of clean-limit two-dimensional (2D) superconductors, which presents an impediment to the pursuit of numerous long-standing predictions for exotic superconductivity with fragile pairing symmetries. We developed a bulk superlattice consisting of the transition metal dichalcogenide (TMD) superconductor 2
H
-niobium disulfide (2
H
-NbS
2
) and a commensurate block layer that yields enhanced two-dimensionality, high electronic quality, and clean-limit inorganic 2D superconductivity. The structure of this material may naturally be extended to generate a distinct family of 2D superconductors, topological insulators, and excitonic systems based on TMDs with improved material properties.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aaz6643</identifier><language>eng</language><publisher>Washington: The American Association for the Advancement of Science</publisher><subject>Carrier mobility ; Chalcogenides ; Material properties ; Mobility ; Niobium ; Organic materials ; Superconductivity ; Superconductors ; Superlattices ; Topological insulators ; Transition metal compounds</subject><ispartof>Science (American Association for the Advancement of Science), 2020-10, Vol.370 (6513), p.231-236</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-191129fd8156cd95bc8acbf1cdae4b568f86739d2934c8fb5b09c70004df72383</citedby><cites>FETCH-LOGICAL-c395t-191129fd8156cd95bc8acbf1cdae4b568f86739d2934c8fb5b09c70004df72383</cites><orcidid>0000-0002-6095-7854 ; 0000-0002-4682-0165 ; 0000-0002-9412-6426 ; 0000-0002-8215-127X ; 0000-0002-5670-2103 ; 0000-0003-0325-5204 ; 0000-0002-8803-1017 ; 0000-0001-5220-8792 ; 0000000303255204 ; 0000000294126426 ; 0000000246820165 ; 000000028215127X ; 0000000288031017 ; 0000000256702103 ; 0000000260957854 ; 0000000152208792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2882,2883,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1693567$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Devarakonda, A.</creatorcontrib><creatorcontrib>Inoue, H.</creatorcontrib><creatorcontrib>Fang, S.</creatorcontrib><creatorcontrib>Ozsoy-Keskinbora, C.</creatorcontrib><creatorcontrib>Suzuki, T.</creatorcontrib><creatorcontrib>Kriener, M.</creatorcontrib><creatorcontrib>Fu, L.</creatorcontrib><creatorcontrib>Kaxiras, E.</creatorcontrib><creatorcontrib>Bell, D. C.</creatorcontrib><creatorcontrib>Checkelsky, J. G.</creatorcontrib><title>Clean 2D superconductivity in a bulk van der Waals superlattice</title><title>Science (American Association for the Advancement of Science)</title><description>Single layers of transition metal dichalcogenides exhibit exotic properties, including superconductivity. The usual route to obtaining such samples is to exfoliate a three-dimensional (3D) crystal. Devarakonda
et al.
instead grew a superlattice comprising alternating layers of the transition metal dichalcogenide hexagonal NbS
2
and the material Ba
3
NbS
5
(see the Perspective by Schoop). The inert Ba
3
NbS
5
layers serve to dissociate the superconducting NbS
2
layers from one another, resulting in 2D superconductivity with high carrier mobility. The combination of high mobility and reduced dimensionality may give rise to exotic quantum phases.
Science
, this issue p.
231
see also p.
170
A superlattice of alternating layers of
H
-NbS
2
and Ba
3
NbS
5
exhibits 2D superconductivity and high carrier mobility.
Advances in low-dimensional superconductivity are often realized through improvements in material quality. Apart from a small group of organic materials, there is a near absence of clean-limit two-dimensional (2D) superconductors, which presents an impediment to the pursuit of numerous long-standing predictions for exotic superconductivity with fragile pairing symmetries. We developed a bulk superlattice consisting of the transition metal dichalcogenide (TMD) superconductor 2
H
-niobium disulfide (2
H
-NbS
2
) and a commensurate block layer that yields enhanced two-dimensionality, high electronic quality, and clean-limit inorganic 2D superconductivity. The structure of this material may naturally be extended to generate a distinct family of 2D superconductors, topological insulators, and excitonic systems based on TMDs with improved material properties.</description><subject>Carrier mobility</subject><subject>Chalcogenides</subject><subject>Material properties</subject><subject>Mobility</subject><subject>Niobium</subject><subject>Organic materials</subject><subject>Superconductivity</subject><subject>Superconductors</subject><subject>Superlattices</subject><subject>Topological insulators</subject><subject>Transition metal compounds</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpd0M1LwzAYBvAgCs7p2WvRi5du-WjS5iSy-QUDL4rHkL5NMbNLZ5IO5l9vtDt5CiS_Nzzvg9AlwTNCqJgHsMaBmWn9LUTBjtCEYMlzSTE7RhOMmcgrXPJTdBbCGuP0JtkE3S46o11Gl1kYtsZD75oBot3ZuM-sy3RWD91ntkukMT5717oLo-x0jBbMOTpp0525OJxT9PZw_7p4ylcvj8-Lu1UOTPKYE5kyyrapCBfQSF5DpaFuCTTaFDUXVVuJksmGSlZA1da8xhLKlLJo2pKyik3R1fhvH6JVaddo4COldQaiIkIynuan6GZEW99_DSZEtbEBTNdpZ_ohKFoUUnImCpzo9T-67gfv0gp_imNSUprUfFTg-xC8adXW2432e0Ww-m1dHVpXh9bZD24vdfw</recordid><startdate>20201009</startdate><enddate>20201009</enddate><creator>Devarakonda, A.</creator><creator>Inoue, H.</creator><creator>Fang, S.</creator><creator>Ozsoy-Keskinbora, C.</creator><creator>Suzuki, T.</creator><creator>Kriener, M.</creator><creator>Fu, L.</creator><creator>Kaxiras, E.</creator><creator>Bell, D. C.</creator><creator>Checkelsky, J. G.</creator><general>The American Association for the Advancement of Science</general><general>American Association for the Advancement of Science (AAAS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6095-7854</orcidid><orcidid>https://orcid.org/0000-0002-4682-0165</orcidid><orcidid>https://orcid.org/0000-0002-9412-6426</orcidid><orcidid>https://orcid.org/0000-0002-8215-127X</orcidid><orcidid>https://orcid.org/0000-0002-5670-2103</orcidid><orcidid>https://orcid.org/0000-0003-0325-5204</orcidid><orcidid>https://orcid.org/0000-0002-8803-1017</orcidid><orcidid>https://orcid.org/0000-0001-5220-8792</orcidid><orcidid>https://orcid.org/0000000303255204</orcidid><orcidid>https://orcid.org/0000000294126426</orcidid><orcidid>https://orcid.org/0000000246820165</orcidid><orcidid>https://orcid.org/000000028215127X</orcidid><orcidid>https://orcid.org/0000000288031017</orcidid><orcidid>https://orcid.org/0000000256702103</orcidid><orcidid>https://orcid.org/0000000260957854</orcidid><orcidid>https://orcid.org/0000000152208792</orcidid></search><sort><creationdate>20201009</creationdate><title>Clean 2D superconductivity in a bulk van der Waals superlattice</title><author>Devarakonda, A. ; Inoue, H. ; Fang, S. ; Ozsoy-Keskinbora, C. ; Suzuki, T. ; Kriener, M. ; Fu, L. ; Kaxiras, E. ; Bell, D. C. ; Checkelsky, J. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-191129fd8156cd95bc8acbf1cdae4b568f86739d2934c8fb5b09c70004df72383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carrier mobility</topic><topic>Chalcogenides</topic><topic>Material properties</topic><topic>Mobility</topic><topic>Niobium</topic><topic>Organic materials</topic><topic>Superconductivity</topic><topic>Superconductors</topic><topic>Superlattices</topic><topic>Topological insulators</topic><topic>Transition metal compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Devarakonda, A.</creatorcontrib><creatorcontrib>Inoue, H.</creatorcontrib><creatorcontrib>Fang, S.</creatorcontrib><creatorcontrib>Ozsoy-Keskinbora, C.</creatorcontrib><creatorcontrib>Suzuki, T.</creatorcontrib><creatorcontrib>Kriener, M.</creatorcontrib><creatorcontrib>Fu, L.</creatorcontrib><creatorcontrib>Kaxiras, E.</creatorcontrib><creatorcontrib>Bell, D. C.</creatorcontrib><creatorcontrib>Checkelsky, J. G.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devarakonda, A.</au><au>Inoue, H.</au><au>Fang, S.</au><au>Ozsoy-Keskinbora, C.</au><au>Suzuki, T.</au><au>Kriener, M.</au><au>Fu, L.</au><au>Kaxiras, E.</au><au>Bell, D. C.</au><au>Checkelsky, J. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clean 2D superconductivity in a bulk van der Waals superlattice</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2020-10-09</date><risdate>2020</risdate><volume>370</volume><issue>6513</issue><spage>231</spage><epage>236</epage><pages>231-236</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Single layers of transition metal dichalcogenides exhibit exotic properties, including superconductivity. The usual route to obtaining such samples is to exfoliate a three-dimensional (3D) crystal. Devarakonda
et al.
instead grew a superlattice comprising alternating layers of the transition metal dichalcogenide hexagonal NbS
2
and the material Ba
3
NbS
5
(see the Perspective by Schoop). The inert Ba
3
NbS
5
layers serve to dissociate the superconducting NbS
2
layers from one another, resulting in 2D superconductivity with high carrier mobility. The combination of high mobility and reduced dimensionality may give rise to exotic quantum phases.
Science
, this issue p.
231
see also p.
170
A superlattice of alternating layers of
H
-NbS
2
and Ba
3
NbS
5
exhibits 2D superconductivity and high carrier mobility.
Advances in low-dimensional superconductivity are often realized through improvements in material quality. Apart from a small group of organic materials, there is a near absence of clean-limit two-dimensional (2D) superconductors, which presents an impediment to the pursuit of numerous long-standing predictions for exotic superconductivity with fragile pairing symmetries. We developed a bulk superlattice consisting of the transition metal dichalcogenide (TMD) superconductor 2
H
-niobium disulfide (2
H
-NbS
2
) and a commensurate block layer that yields enhanced two-dimensionality, high electronic quality, and clean-limit inorganic 2D superconductivity. The structure of this material may naturally be extended to generate a distinct family of 2D superconductors, topological insulators, and excitonic systems based on TMDs with improved material properties.</abstract><cop>Washington</cop><pub>The American Association for the Advancement of Science</pub><doi>10.1126/science.aaz6643</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6095-7854</orcidid><orcidid>https://orcid.org/0000-0002-4682-0165</orcidid><orcidid>https://orcid.org/0000-0002-9412-6426</orcidid><orcidid>https://orcid.org/0000-0002-8215-127X</orcidid><orcidid>https://orcid.org/0000-0002-5670-2103</orcidid><orcidid>https://orcid.org/0000-0003-0325-5204</orcidid><orcidid>https://orcid.org/0000-0002-8803-1017</orcidid><orcidid>https://orcid.org/0000-0001-5220-8792</orcidid><orcidid>https://orcid.org/0000000303255204</orcidid><orcidid>https://orcid.org/0000000294126426</orcidid><orcidid>https://orcid.org/0000000246820165</orcidid><orcidid>https://orcid.org/000000028215127X</orcidid><orcidid>https://orcid.org/0000000288031017</orcidid><orcidid>https://orcid.org/0000000256702103</orcidid><orcidid>https://orcid.org/0000000260957854</orcidid><orcidid>https://orcid.org/0000000152208792</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2020-10, Vol.370 (6513), p.231-236 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_osti_scitechconnect_1693567 |
source | Science Magazine |
subjects | Carrier mobility Chalcogenides Material properties Mobility Niobium Organic materials Superconductivity Superconductors Superlattices Topological insulators Transition metal compounds |
title | Clean 2D superconductivity in a bulk van der Waals superlattice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A42%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clean%202D%20superconductivity%20in%20a%20bulk%20van%20der%20Waals%20superlattice&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Devarakonda,%20A.&rft.date=2020-10-09&rft.volume=370&rft.issue=6513&rft.spage=231&rft.epage=236&rft.pages=231-236&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aaz6643&rft_dat=%3Cproquest_osti_%3E2449501722%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449501722&rft_id=info:pmid/&rfr_iscdi=true |