Clean 2D superconductivity in a bulk van der Waals superlattice
Single layers of transition metal dichalcogenides exhibit exotic properties, including superconductivity. The usual route to obtaining such samples is to exfoliate a three-dimensional (3D) crystal. Devarakonda et al. instead grew a superlattice comprising alternating layers of the transition metal d...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2020-10, Vol.370 (6513), p.231-236 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Single layers of transition metal dichalcogenides exhibit exotic properties, including superconductivity. The usual route to obtaining such samples is to exfoliate a three-dimensional (3D) crystal. Devarakonda
et al.
instead grew a superlattice comprising alternating layers of the transition metal dichalcogenide hexagonal NbS
2
and the material Ba
3
NbS
5
(see the Perspective by Schoop). The inert Ba
3
NbS
5
layers serve to dissociate the superconducting NbS
2
layers from one another, resulting in 2D superconductivity with high carrier mobility. The combination of high mobility and reduced dimensionality may give rise to exotic quantum phases.
Science
, this issue p.
231
see also p.
170
A superlattice of alternating layers of
H
-NbS
2
and Ba
3
NbS
5
exhibits 2D superconductivity and high carrier mobility.
Advances in low-dimensional superconductivity are often realized through improvements in material quality. Apart from a small group of organic materials, there is a near absence of clean-limit two-dimensional (2D) superconductors, which presents an impediment to the pursuit of numerous long-standing predictions for exotic superconductivity with fragile pairing symmetries. We developed a bulk superlattice consisting of the transition metal dichalcogenide (TMD) superconductor 2
H
-niobium disulfide (2
H
-NbS
2
) and a commensurate block layer that yields enhanced two-dimensionality, high electronic quality, and clean-limit inorganic 2D superconductivity. The structure of this material may naturally be extended to generate a distinct family of 2D superconductors, topological insulators, and excitonic systems based on TMDs with improved material properties. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.aaz6643 |