Modeling chemical reactions on surfaces: The roles of chemical bonding and van der Waals interactions
Chemical reactions on surfaces play central roles in heterogeneous catalysis, and most reactions involve the formation and/or the cleavage of bonds. At present, density functional theory (DFT) has become the workhorse for computational investigation of reaction mechanisms, but its predictive power h...
Gespeichert in:
Veröffentlicht in: | Progress in surface science 2019-12, Vol.94 (4), p.100561, Article 100561 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Chemical reactions on surfaces play central roles in heterogeneous catalysis, and most reactions involve the formation and/or the cleavage of bonds. At present, density functional theory (DFT) has become the workhorse for computational investigation of reaction mechanisms, but its predictive power has been severely limited by the lack of appropriate exchange-correlation functionals. Here, we show that there are many cases where the chemical bonding and van der Waals (vdW) interactions both play a key role in chemical reactions on surfaces. After briefly introducing some DFT methods and basic theory in chemical reactions, we first demonstrate that DFT can help to understand the mechanisms of “classic” reactions that mainly dominated by covalent bonding and vdW forces, as exemplified in electrocatalytic reduction of CO2 and the fabrication of 2D materials on metal substrates. We next show that DFT calculations can help to uncover the tautomerization reactions of molecules on metal surfaces, wherein the hydrogen bonding and vdW forces would largely affect the reaction process. More importantly, we show that in some cases, the vdW interactions can become the decisive effect that determines the adsorption configuration, energy hierarchy, and the potential-energy surface of chemical reactions, yielding distinct pathways and products. Additionally, we highlight the importance of more realistic conditions, such as surface defects, finite coverage, and temperature effects, in accurate modeling of chemical reactions. Finally, we summarize some challenges in modeling catalysis, which include many-body dispersive correction, strong correlation effect, and non-adiabatic approximations. |
---|---|
ISSN: | 0079-6816 1878-4240 |
DOI: | 10.1016/j.progsurf.2019.100561 |