K-means-driven Gaussian Process data collection for angle-resolved photoemission spectroscopy

We propose the combination of k-means clustering with Gaussian Process (GP) regression in the analysis and exploration of 4D angle-resolved photoemission spectroscopy (ARPES) data. Using cluster labels as the driving metric on which the GP is trained, this method allows us to reconstruct the experim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning: science and technology 2020-12, Vol.1 (4), p.45015
Hauptverfasser: Melton, Charles N, Noack, Marcus M, Ohta, Taisuke, Beechem, Thomas E, Robinson, Jeremy, Zhang, Xiaotian, Bostwick, Aaron, Jozwiak, Chris, Koch, Roland J, Zwart, Petrus H, Hexemer, Alexander, Rotenberg, Eli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose the combination of k-means clustering with Gaussian Process (GP) regression in the analysis and exploration of 4D angle-resolved photoemission spectroscopy (ARPES) data. Using cluster labels as the driving metric on which the GP is trained, this method allows us to reconstruct the experimental phase diagram from as low as 12% of the original dataset size. In addition to the phase diagram, the GP is able to reconstruct spectra in energy-momentum space from this minimal set of data points. These findings suggest that this methodology can be used to improve the efficiency of ARPES data collection strategies for unknown samples. The practical feasibility of implementing this technology at a synchrotron beamline and the overall efficiency implications of this method are discussed with a view on enabling the collection of more samples or rapid identification of regions of interest.
ISSN:2632-2153
2632-2153
DOI:10.1088/2632-2153/abab61