Impact of spatiotemporal smoothing on the two-plasmon–decay instability

Higher levels of hot electrons from the two-plasmon–decay instability are observed when smoothing by spectral dispersion (SSD) is turned off in directly driven inertial confinement fusion experiments at the Omega Laser Facility. This finding is explained using a hot-spot model based on speckle stati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2020-10, Vol.27 (10)
Hauptverfasser: Turnbull, D., Maximov, A. V., Cao, D., Christopherson, A. R., Edgell, D. H., Follett, R. K., Gopalaswamy, V., Knauer, J. P., Palastro, J. P., Shvydky, A., Stoeckl, C., Wen, H., Froula, D. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Higher levels of hot electrons from the two-plasmon–decay instability are observed when smoothing by spectral dispersion (SSD) is turned off in directly driven inertial confinement fusion experiments at the Omega Laser Facility. This finding is explained using a hot-spot model based on speckle statistics and simulation results from the laser–plasma simulation environment. The model accurately reproduces the relative increase in hot-electron activity at two different drive intensities although it slightly overestimates the absolute number of hot electrons in all cases. Extrapolating from the current ≈ 360-GHz system while adhering to the logic of the hot-spot model suggests that a larger SSD bandwidth should significantly mitigate hot-electron generation, and legacy 1-THz OMEGA experiments appear to support this conclusion. These results demonstrate that it is essential to account for laser speckles and spatiotemporal smoothing to obtain quantitative agreement with experiments. A compilation of hot-electron data from the past two decades reveals several other important points: (1) many prior experiments are more easily understood using recent results from multibeam absolute instability theory and (2) experiments with ignition-scale conditions produce less hot electrons compared to OMEGA spherical experiments for a given vacuum overlapped intensity, which is a promising result for validating performance predictions based on hydrodynamic scaling relations.
ISSN:1070-664X
1089-7674
DOI:10.1063/5.0019080