Using numerical methods to screen magnetocaloric materials in an active magnetic regenerative cycle

•A parametric convective heat transfer term is used to assess tspan & cooling power.•Four major magnetocaloric materials are screened.•Optimal fluid velocity depends on the magnetic transition temperature. A 2-dimensional numerical model of a room temperature operating Active Magnetic Regenerato...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of refrigeration 2020-12, Vol.120 (C), p.50-57
Hauptverfasser: Ucar, Huseyin, Paudyal, Durga, Boyraz, Ozdal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•A parametric convective heat transfer term is used to assess tspan & cooling power.•Four major magnetocaloric materials are screened.•Optimal fluid velocity depends on the magnetic transition temperature. A 2-dimensional numerical model of a room temperature operating Active Magnetic Regenerator (AMR) that comprises of a regenerator, hot and cold heat exchangers, heat transfer fluid is developed. The regenerator is made of a magnetocaloric material (MCM) which heats up upon applying a magnetic field, H, and cools down when the field is removed; thus, making it the most essential part of an AMR. The model takes experimentally measured ∆Tad(H,T) and the Cp(H,T) data as input and provides quantitative performance metrics of the magnetic cooling system, such as ∆Tspan and the cooling load, as output. With this model, it is possible to assess a wide range of MCMs in an AMR. 4 different MCMs were investigated using this model in terms of their ∆Tspan and the cooling loads—LaFe10.96Co0.97Si1.07, MnFeP(1-x)As(x) and AlFe2B2 and Gd. During the screening of MCMs, all the important operating conditions of the device were fixed such as the fluid flow rate, ambient temperature, cycle duration, magnetic field strength. Our results indicate that Gd exhibits the maximum ∆Tspan with respectable cooling load, while AlFe2B2 generates the lowest ∆Tspan. Even though LaFeCoSi compound did not perform as well as Gd, it could be the MCM choice for the realization of magnetic refrigeration on a global scale due to its much lower cost.
ISSN:0140-7007
1879-2081
DOI:10.1016/j.ijrefrig.2020.08.015