A hybrid calibration approach to Hertz‐type contact parameters for discrete element models

Summary This study aims at providing a hybrid calibration framework to estimate Hertz‐type contact parameters (particle‐scale shear modulus and Poisson ratio) for both two‐dimensional and three‐dimensional discrete element modelling (DEM). On the basis of statistically isotropic granular packings, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical and analytical methods in geomechanics 2020-06, Vol.44 (9), p.1281-1300
Hauptverfasser: Qu, Tongming, Feng, Yuntian, Zhao, Tingting, Wang, Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary This study aims at providing a hybrid calibration framework to estimate Hertz‐type contact parameters (particle‐scale shear modulus and Poisson ratio) for both two‐dimensional and three‐dimensional discrete element modelling (DEM). On the basis of statistically isotropic granular packings, a set of analytical formulae between macroscopic material parameters (Young modulus and Poisson ratio) and particle‐scale Hertz‐type contact parameters for granular systems are derived under small‐strain isotropic stress conditions. However, the derived analytical solutions are only estimated values for general models. By viewing each DEM modelling as an implicit mathematical function taking the particle‐level parameters as independent variables and employing the derived analytical solutions as the initial input parameters, an automatic iterative scheme is proposed to obtain the calibrated parameters with higher accuracies. Considering highly nonlinear features and discontinuities of the macro‐micro relationship in Hertz‐based discrete element models, the adaptive moment estimation algorithm is adopted in this study because of its capacity of dealing with noise gradients of cost functions. The proposed method is validated with several numerical cases including randomly distributed monodisperse and polydisperse packings. Noticeable improvements in terms of calibration efficiency and accuracy have been made.
ISSN:0363-9061
1096-9853
DOI:10.1002/nag.3061