Light and Elevated Temperature Induced Degradation (LeTID) in a Utility-Scale Photovoltaic System

We present a detailed case study of degradation in monocrystalline silicon photovoltaic modules operating in a utility-scale power plant over the course of approximately three years. We present the results of degradation analysis on arrays within the site, and find that five of the six arrays degrad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of photovoltaics 2020-07, Vol.10 (4), p.1084-1092
Hauptverfasser: Deceglie, Michael G., Silverman, Timothy J, Johnston, Steve W., Rand, James A., Reed, Mason J., Flottemesch, Robert, Repins, Ingrid L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a detailed case study of degradation in monocrystalline silicon photovoltaic modules operating in a utility-scale power plant over the course of approximately three years. We present the results of degradation analysis on arrays within the site, and find that five of the six arrays degraded faster than the best performing array, even though the arrays consist of modules of the same manufacturer and model. We also describe the results of extensive laboratory characterization of modules returned from the field, including module- and cell-level current-voltage characterization, luminescence imaging, and accelerated testing. The laboratory test results and the field performance are consistent with light and elevated temperature induced degradation (LeTID). Notably, we observe differences in back contact technology between affected and unaffected modules. This article also demonstrates a method to identify possible LeTID degradation in the field and confirm the result with laboratory testing of a small number of modules.
ISSN:2156-3381
2156-3403
DOI:10.1109/JPHOTOV.2020.2989168