Enabling fast charging of lithium-ion batteries through secondary- /dual- pore network: Part I - Analytical diffusion model

Battery performance is strongly correlated with electrode microstructural properties. Enabling fast charging of lithium-ion batteries requires improved through-plane ionic diffusion that can be achieved through, among other strategies, structured electrodes with a secondary- or dual-pore network (SP...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2020-05, Vol.342, p.136034, Article 136034
Hauptverfasser: Usseglio-Viretta, F.L.E., Mai, W., Colclasure, A.M., Doeff, M., Yi, Eongyu, Smith, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Battery performance is strongly correlated with electrode microstructural properties. Enabling fast charging of lithium-ion batteries requires improved through-plane ionic diffusion that can be achieved through, among other strategies, structured electrodes with a secondary- or dual-pore network (SPN). In this work, an analytical model investigates the impact of such an SPN on ionic diffusion with a composite electrode, considering various pore-channel geometries and comparing to standard electrodes with identical gravimetric- and volumetric-specific theoretical capacities. Relevant SPN design parameters and tortuosity coefficients are identified according to three optimization objectives that aim to balance the improved overall through-plane diffusion, thanks to the coarse aligned channels, and degraded in-plane diffusion because of the porous matrix densification required to maintain gravimetric- and volumetric-specific theoretical capacities. The model indicates that a relatively low amount of SPN is required and that electrodes with high through-plane tortuosity and low in-plane tortuosity benefit most from such architecture. •In-plane diffusion limitation intrinsically restricts the SPN volume fraction.•High tortuosity electrodes benefit the most from SPN.•Electrodes with high tortuosity anisotropy fits well with SPN.
ISSN:0013-4686
1873-3859
DOI:10.1016/j.electacta.2020.136034