Lone-Electron-Pair Micelles Strengthen Bond Anharmonicity in MnPb16Sb14S38 Complex Sulfosalt Leading to Ultra-Low Thermal Conductivity
Designing crystalline solids in which intrinsic extremely low lattice thermal conductivity mainly arises from its unique bonding nature rather than structure complexity and/or atomic disorder could promote thermal energy manipulation and utilization for applications ranging from thermoelectric energ...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2020-09, Vol.12 (40) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Designing crystalline solids in which intrinsic extremely low lattice thermal conductivity mainly arises from its unique bonding nature rather than structure complexity and/or atomic disorder could promote thermal energy manipulation and utilization for applications ranging from thermoelectric energy conversion to thermal barrier coatings. Here, we report an extremely low lattice thermal conductivity of ~0.34 W m-1 K-1 at 300 K in the new complex sulfosalt MnPb16Sb14S38. We attribute the ultra-low lattice thermal conductivity to a synergistic combination of scattering mechanisms involving (1) strong bond anharmonicity in various structural building units, owing to the presence of stereoactive lone-electron-pair (LEP) micelles, and (2) phonon scattering at the interfaces between building units of increasing size and complexity. Remarkably, low-temperature heat capacity measurement revealed a Cp value of 0.206 J g-1 K-1 at T > 300 K, which is 22% lower than the Dulong-Petit value (0.274 J g-1 K-1). Further analysis of the Cp data and sound velocity (ν = 1834 m/s) measurement yielded Debye temperature values of 161 K and 187 K, respectively. Here, the resulting Grüneisen parameter, γ = 1.65, further supports strong bond anharmonicity as the dominant mechanism responsible for the observed extremely low lattice thermal conductivity. |
---|---|
ISSN: | 1944-8244 1944-8252 |