Observations regarding inclusions in the growth of $\mathrm{Cs}$2$\mathrm{HfCl}$6 single crystal scintillators
Cs2HfCl6 (CHC) is a promising high density, high-Z, non-hygroscopic, and high energy resolution scintillator. In CHC, many crystals have CsCl inclusions that form during growth. In this paper, we investigate how material synthesis, growth rate, and thermal gradient affect the formation of CsCl inclu...
Gespeichert in:
Veröffentlicht in: | Journal of crystal growth 2019-11, Vol.531 (C) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | C |
container_start_page | |
container_title | Journal of crystal growth |
container_volume | 531 |
creator | Delzer, C. Zhuravleva, M. Stand, L. Melcher, C. Cherepy, N. Payne, S. Sanner, R. Hayward, J. P. |
description | Cs2HfCl6 (CHC) is a promising high density, high-Z, non-hygroscopic, and high energy resolution scintillator. In CHC, many crystals have CsCl inclusions that form during growth. In this paper, we investigate how material synthesis, growth rate, and thermal gradient affect the formation of CsCl inclusions and their effect on scintillation performance. First, precursor material was made through a methanol synthesis process both with and without hydrochlorination. Next, five crystals were grown using Bridgman method, at growth rates of 1 or 0.5 mm/h, and thermal gradients of 21 °C or 34 °C per millimeter. The best overall performance was observed in a 22 mm diameter crystal produced using hydrochlorination which was grown at 1 mm/h in a thermal gradient of 34 °C per millimeter. It had a light yield of 36,000 photons/MeV and an energy resolution of 4.0% at 662 keV. Finally, we have also shown that poorer scintillation performance in the lower quality crystals is most likely due to reduced light collection caused by a higher concentration of inclusions. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1644318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1644318</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_16443183</originalsourceid><addsrcrecordid>eNqNi8sKwjAURIMoWB__cJFuC0lba_dFcefGpSAxpm0kTSD3qoj47xYR125mmMOZAYtEucqSJefpkEV9pglP83LMJogXzrkoBI-Y251Qh5sk4x1C0I0MZ-MaME7ZK36gcUCthib4O7Xga4gPnaQ2dM8KX3H6W9u6sq-4AOz_VoMKDyRpAZVxZKyV5APO2KiWFvX821O22Kz31TbxSObYq6RVq7xzWtFRFHmeiTL7S3oDLz5L9g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Observations regarding inclusions in the growth of $\mathrm{Cs}$2$\mathrm{HfCl}$6 single crystal scintillators</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Delzer, C. ; Zhuravleva, M. ; Stand, L. ; Melcher, C. ; Cherepy, N. ; Payne, S. ; Sanner, R. ; Hayward, J. P.</creator><creatorcontrib>Delzer, C. ; Zhuravleva, M. ; Stand, L. ; Melcher, C. ; Cherepy, N. ; Payne, S. ; Sanner, R. ; Hayward, J. P. ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>Cs2HfCl6 (CHC) is a promising high density, high-Z, non-hygroscopic, and high energy resolution scintillator. In CHC, many crystals have CsCl inclusions that form during growth. In this paper, we investigate how material synthesis, growth rate, and thermal gradient affect the formation of CsCl inclusions and their effect on scintillation performance. First, precursor material was made through a methanol synthesis process both with and without hydrochlorination. Next, five crystals were grown using Bridgman method, at growth rates of 1 or 0.5 mm/h, and thermal gradients of 21 °C or 34 °C per millimeter. The best overall performance was observed in a 22 mm diameter crystal produced using hydrochlorination which was grown at 1 mm/h in a thermal gradient of 34 °C per millimeter. It had a light yield of 36,000 photons/MeV and an energy resolution of 4.0% at 662 keV. Finally, we have also shown that poorer scintillation performance in the lower quality crystals is most likely due to reduced light collection caused by a higher concentration of inclusions.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>Bridgman technique ; cesium hafnium chloride ; chloride ; MATERIALS SCIENCE ; optical materials ; radiation detection ; scintillator materials</subject><ispartof>Journal of crystal growth, 2019-11, Vol.531 (C)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1644318$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Delzer, C.</creatorcontrib><creatorcontrib>Zhuravleva, M.</creatorcontrib><creatorcontrib>Stand, L.</creatorcontrib><creatorcontrib>Melcher, C.</creatorcontrib><creatorcontrib>Cherepy, N.</creatorcontrib><creatorcontrib>Payne, S.</creatorcontrib><creatorcontrib>Sanner, R.</creatorcontrib><creatorcontrib>Hayward, J. P.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Observations regarding inclusions in the growth of $\mathrm{Cs}$2$\mathrm{HfCl}$6 single crystal scintillators</title><title>Journal of crystal growth</title><description>Cs2HfCl6 (CHC) is a promising high density, high-Z, non-hygroscopic, and high energy resolution scintillator. In CHC, many crystals have CsCl inclusions that form during growth. In this paper, we investigate how material synthesis, growth rate, and thermal gradient affect the formation of CsCl inclusions and their effect on scintillation performance. First, precursor material was made through a methanol synthesis process both with and without hydrochlorination. Next, five crystals were grown using Bridgman method, at growth rates of 1 or 0.5 mm/h, and thermal gradients of 21 °C or 34 °C per millimeter. The best overall performance was observed in a 22 mm diameter crystal produced using hydrochlorination which was grown at 1 mm/h in a thermal gradient of 34 °C per millimeter. It had a light yield of 36,000 photons/MeV and an energy resolution of 4.0% at 662 keV. Finally, we have also shown that poorer scintillation performance in the lower quality crystals is most likely due to reduced light collection caused by a higher concentration of inclusions.</description><subject>Bridgman technique</subject><subject>cesium hafnium chloride</subject><subject>chloride</subject><subject>MATERIALS SCIENCE</subject><subject>optical materials</subject><subject>radiation detection</subject><subject>scintillator materials</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNi8sKwjAURIMoWB__cJFuC0lba_dFcefGpSAxpm0kTSD3qoj47xYR125mmMOZAYtEucqSJefpkEV9pglP83LMJogXzrkoBI-Y251Qh5sk4x1C0I0MZ-MaME7ZK36gcUCthib4O7Xga4gPnaQ2dM8KX3H6W9u6sq-4AOz_VoMKDyRpAZVxZKyV5APO2KiWFvX821O22Kz31TbxSObYq6RVq7xzWtFRFHmeiTL7S3oDLz5L9g</recordid><startdate>20191104</startdate><enddate>20191104</enddate><creator>Delzer, C.</creator><creator>Zhuravleva, M.</creator><creator>Stand, L.</creator><creator>Melcher, C.</creator><creator>Cherepy, N.</creator><creator>Payne, S.</creator><creator>Sanner, R.</creator><creator>Hayward, J. P.</creator><general>Elsevier</general><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20191104</creationdate><title>Observations regarding inclusions in the growth of $\mathrm{Cs}$2$\mathrm{HfCl}$6 single crystal scintillators</title><author>Delzer, C. ; Zhuravleva, M. ; Stand, L. ; Melcher, C. ; Cherepy, N. ; Payne, S. ; Sanner, R. ; Hayward, J. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_16443183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bridgman technique</topic><topic>cesium hafnium chloride</topic><topic>chloride</topic><topic>MATERIALS SCIENCE</topic><topic>optical materials</topic><topic>radiation detection</topic><topic>scintillator materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delzer, C.</creatorcontrib><creatorcontrib>Zhuravleva, M.</creatorcontrib><creatorcontrib>Stand, L.</creatorcontrib><creatorcontrib>Melcher, C.</creatorcontrib><creatorcontrib>Cherepy, N.</creatorcontrib><creatorcontrib>Payne, S.</creatorcontrib><creatorcontrib>Sanner, R.</creatorcontrib><creatorcontrib>Hayward, J. P.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delzer, C.</au><au>Zhuravleva, M.</au><au>Stand, L.</au><au>Melcher, C.</au><au>Cherepy, N.</au><au>Payne, S.</au><au>Sanner, R.</au><au>Hayward, J. P.</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observations regarding inclusions in the growth of $\mathrm{Cs}$2$\mathrm{HfCl}$6 single crystal scintillators</atitle><jtitle>Journal of crystal growth</jtitle><date>2019-11-04</date><risdate>2019</risdate><volume>531</volume><issue>C</issue><issn>0022-0248</issn><eissn>1873-5002</eissn><abstract>Cs2HfCl6 (CHC) is a promising high density, high-Z, non-hygroscopic, and high energy resolution scintillator. In CHC, many crystals have CsCl inclusions that form during growth. In this paper, we investigate how material synthesis, growth rate, and thermal gradient affect the formation of CsCl inclusions and their effect on scintillation performance. First, precursor material was made through a methanol synthesis process both with and without hydrochlorination. Next, five crystals were grown using Bridgman method, at growth rates of 1 or 0.5 mm/h, and thermal gradients of 21 °C or 34 °C per millimeter. The best overall performance was observed in a 22 mm diameter crystal produced using hydrochlorination which was grown at 1 mm/h in a thermal gradient of 34 °C per millimeter. It had a light yield of 36,000 photons/MeV and an energy resolution of 4.0% at 662 keV. Finally, we have also shown that poorer scintillation performance in the lower quality crystals is most likely due to reduced light collection caused by a higher concentration of inclusions.</abstract><cop>United States</cop><pub>Elsevier</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0248 |
ispartof | Journal of crystal growth, 2019-11, Vol.531 (C) |
issn | 0022-0248 1873-5002 |
language | eng |
recordid | cdi_osti_scitechconnect_1644318 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Bridgman technique cesium hafnium chloride chloride MATERIALS SCIENCE optical materials radiation detection scintillator materials |
title | Observations regarding inclusions in the growth of $\mathrm{Cs}$2$\mathrm{HfCl}$6 single crystal scintillators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A11%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observations%20regarding%20inclusions%20in%20the%20growth%20of%20$%5Cmathrm%7BCs%7D$2$%5Cmathrm%7BHfCl%7D$6%20single%20crystal%20scintillators&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Delzer,%20C.&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2019-11-04&rft.volume=531&rft.issue=C&rft.issn=0022-0248&rft.eissn=1873-5002&rft_id=info:doi/&rft_dat=%3Costi%3E1644318%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |