Observations regarding inclusions in the growth of $\mathrm{Cs}$2$\mathrm{HfCl}$6 single crystal scintillators

Cs2HfCl6 (CHC) is a promising high density, high-Z, non-hygroscopic, and high energy resolution scintillator. In CHC, many crystals have CsCl inclusions that form during growth. In this paper, we investigate how material synthesis, growth rate, and thermal gradient affect the formation of CsCl inclu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of crystal growth 2019-11, Vol.531 (C)
Hauptverfasser: Delzer, C., Zhuravleva, M., Stand, L., Melcher, C., Cherepy, N., Payne, S., Sanner, R., Hayward, J. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cs2HfCl6 (CHC) is a promising high density, high-Z, non-hygroscopic, and high energy resolution scintillator. In CHC, many crystals have CsCl inclusions that form during growth. In this paper, we investigate how material synthesis, growth rate, and thermal gradient affect the formation of CsCl inclusions and their effect on scintillation performance. First, precursor material was made through a methanol synthesis process both with and without hydrochlorination. Next, five crystals were grown using Bridgman method, at growth rates of 1 or 0.5 mm/h, and thermal gradients of 21 °C or 34 °C per millimeter. The best overall performance was observed in a 22 mm diameter crystal produced using hydrochlorination which was grown at 1 mm/h in a thermal gradient of 34 °C per millimeter. It had a light yield of 36,000 photons/MeV and an energy resolution of 4.0% at 662 keV. Finally, we have also shown that poorer scintillation performance in the lower quality crystals is most likely due to reduced light collection caused by a higher concentration of inclusions.
ISSN:0022-0248
1873-5002