Suppression of magnetic ordering in Fe-deficient Fe3−xGeTe2 from application of pressure

Two-dimensional van der Waals magnets with multiple functionalities are becoming increasingly important for emerging technologies in spintronics and valleytronics. Application of external pressure is one method to cleanly explore the underlying physical mechanisms of the intrinsic magnetism. In this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2020-08, Vol.102 (5), p.1
Hauptverfasser: O'Hara, Dante J, Brubaker, Zachary E, Stillwell, Ryan L, O'Bannon, Earl F, Baker, Alexander A, Weber, Daniel, Bayu Aji, Leonardus Bimo, Goldberger, Joshua E, Kawakami, Roland K, Zieve, Rena J, Jeffries, Jason R, McCall, Scott K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two-dimensional van der Waals magnets with multiple functionalities are becoming increasingly important for emerging technologies in spintronics and valleytronics. Application of external pressure is one method to cleanly explore the underlying physical mechanisms of the intrinsic magnetism. In this paper, the magnetic, electronic, and structural properties of van der Waals-layered, Fe-deficient Fe3−xGeTe2 are investigated. Magnetotransport measurements show a monotonic decrease in the Curie temperature (TC) and the magnetic moment with increasing pressure up to 13.9 GPa. The electrical resistance of Fe3−xGeTe2 shows a change from metallic to a seemingly nonmetallic behavior with increasing pressure. High-pressure angle dispersive powder x-ray diffraction shows a monotonic compression of the unit cell and a reduction of the volume by ∼25% with no evidence of structural phase changes up to 29.4(4) GPa. We suggest that the decrease in the TC due to pressure results from increased intralayer coupling and delocalization that leads to a change in the exchange interaction.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.102.054405