Work function measurements of clean and modified carbon nanospikes

Carbon surfaces incorporating densely packed spikes with nanometer sharpness have shown exceptional electrocatalytic properties attributed to the enhanced electric field from the topography of the spikes. In this article, the composition of nanospike surfaces is identified by x-ray photoelectron spe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2020-10, Vol.168 (C), p.302-307
Hauptverfasser: Baddorf, Arthur P., Rondinone, Adam J., Hensley, Dale K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Carbon surfaces incorporating densely packed spikes with nanometer sharpness have shown exceptional electrocatalytic properties attributed to the enhanced electric field from the topography of the spikes. In this article, the composition of nanospike surfaces is identified by x-ray photoelectron spectroscopy (XPS) and their absolute work function determined using ultraviolet photoemission spectroscopy (UPS). Low temperature annealing of as-grown samples above 275 °C is required to produce a clean surface which has a 4.13 eV work function, a half volt lower than that of flat graphite. Treatments that contaminate the spiked surface, including exposure to air, oxidation at elevated temperature, or immersion in water or hydrocarbons, all increase the work function. Processing that blunts the spikes, including exposure to an oxygen plasma, argon sputtering, or high temperature annealing (800 °C) result in a work function close to that of flat graphite. An unusual double onset in the UPS secondary electron intensity is observed on as-grown nanospike samples and is reproduced by absorbing hydrocarbons on the surface. This double onset appears to be unique to carbon substrates and may originate in inelastic scattering of photoelectrons. [Display omitted]
ISSN:0008-6223
1873-3891
DOI:10.1016/j.carbon.2020.06.072