Three-dimensional cross-field flows at the plasma-material interface in an oblique magnetic field

This article describes experimental evidence that the magnetic presheath is a fully three-dimensional structure modified by ion–neutral collisions. Velocity distributions of both ions and neutrals, obtained via laser-induced fluorescence, show that cross field ion drifts do not result from entrainme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2020-07, Vol.27 (7)
Hauptverfasser: Thompson, Derek S., Khaziev, Rinat, Fortney-Henriquez, Miguel, Keniley, Shane, Scime, Earl E., Curreli, Davide
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article describes experimental evidence that the magnetic presheath is a fully three-dimensional structure modified by ion–neutral collisions. Velocity distributions of both ions and neutrals, obtained via laser-induced fluorescence, show that cross field ion drifts do not result from entrainment of ions in a flowing neutral background. Ion flows parallel to E × B arise and accelerate to as much as 0.2cs within several ion gyroradii of the boundary surface, where cs is the sound speed. Within measurement resolution, the onset of the E × B aligned flow occurs at the same distance to the surface that ions begin to deflect from travel along magnetic field lines. Collisional fluid and particle-in-cell simulations of the boundary region are compared to the experimental measurements. We find that, in contrast to the classical collisionless Chodura model, collisional effects between the ions and the non-flowing neutral population are essential to quantitatively predict the observed ion drift velocities. No momentum coupling between ions and neutrals, separable from noise and other effects, is observed in either signal. We discuss several explanations and implications of this observation.
ISSN:1070-664X
1089-7674
DOI:10.1063/5.0012442