Ferrimagnetic Skyrmions in Topological Insulator/Ferrimagnet Heterostructures
Magnetic skyrmions are topologically nontrivial chiral spin textures that have potential applications in next‐generation energy‐efficient and high‐density spintronic devices. In general, the chiral spins of skyrmions are stabilized by the noncollinear Dzyaloshinskii–Moriya interaction (DMI), origina...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2020-08, Vol.32 (34), p.e2003380-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Magnetic skyrmions are topologically nontrivial chiral spin textures that have potential applications in next‐generation energy‐efficient and high‐density spintronic devices. In general, the chiral spins of skyrmions are stabilized by the noncollinear Dzyaloshinskii–Moriya interaction (DMI), originating from the inversion symmetry breaking combined with the strong spin–orbit coupling (SOC). Here, the strong SOC from topological insulators (TIs) is utilized to provide a large interfacial DMI in TI/ferrimagnet heterostructures at room temperature, resulting in small‐size (radius ≈ 100 nm) skyrmions in the adjacent ferrimagnet. Antiferromagnetically coupled skyrmion sublattices are observed in the ferrimagnet by element‐resolved scanning transmission X‐ray microscopy, showing the potential of a vanishing skyrmion Hall effect and ultrafast skyrmion dynamics. The line‐scan spin profile of the single skyrmion shows a Néel‐type domain wall structure and a 120 nm size of the 180° domain wall. This work demonstrates the sizable DMI and small skyrmions in TI‐based heterostructures with great promise for low‐energy spintronic devices.
The strong spin–orbit coupling in topological surface states provides a large interfacial noncollinear Dzyaloshinskii–Moriya interaction in topological insulator/ferrimagnet heterostructures, resulting in small‐size (radius around 100 nm) skyrmions in the adjacent ferrimagnet at room temperature, where antiferromagnetically coupled skyrmion sublattices are observed. |
---|---|
ISSN: | 0935-9648 1521-4095 |
DOI: | 10.1002/adma.202003380 |