Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques

Machine-learning (ML) techniques are explored to identify and classify hadronic decays of highly Lorentz-boosted W/Z/Higgs bosons and top quarks. Techniques without ML have also been evaluated and are included for comparison. The identification performances of a variety of algorithms are characteriz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of instrumentation 2020-06, Vol.15 (6), p.P06005-P06005
Hauptverfasser: Sirunyan, A.M., Tumasyan, A., Adam, W., Ambrogi, F., Bergauer, T., Dragicevic, M., Erö, J., Valle, A. Escalante Del, Flechl, M., Frühwirth, R., Jeitler, M., Krammer, N., Krätschmer, I., Liko, D., Madlener, T., Mikulec, I., Rad, N., Schieck, J., Schöfbeck, R., Spanring, M., Waltenberger, W., Wulz, C.-E., Zarucki, M., Drugakov, V., Mossolov, V., Gonzalez, J. Suarez, Darwish, M.R., Wolf, E.A. De, Croce, D. Di, Janssen, X., Lelek, A., Pieters, M., Sfar, H. Rejeb, Haevermaet, H. Van, Mechelen, P. Van, Putte, S. Van, Remortel, N. Van, Blekman, F., Bols, E.S., Chhibra, S.S., D'Hondt, J., Clercq, J. De, Lontkovskyi, D., Lowette, S., Marchesini, I., Moortgat, S., Python, Q., Skovpen, K., Tavernier, S., Doninck, W. Van, Mulders, P. Van, Beghin, D., Bilin, B., Clerbaux, B., Lentdecker, G. De, Delannoy, H., Dorney, B., Favart, L., Grebenyuk, A., Kalsi, A.K., Moureaux, L., Popov, A., Postiau, N., Starling, E., Thomas, L., Velde, C. Vander, Vanlaer, P., Vannerom, D., Cornelis, T., Dobur, D., Khvastunov, I., Niedziela, M., Roskas, C., Tytgat, M., Verbeke, W., Vermassen, B., Vit, M., Bondu, O., Bruno, G., Caputo, C., David, P., Delaere, C., Delcourt, M., Giammanco, A., Lemaitre, V., Prisciandaro, J., Saggio, A., Marono, M. Vidal, Vischia, P., Zobec, J., Alves, F.L., Alves, G.A., Silva, G. Correia, Hensel, C., Moraes, A., Teles, P. Rebello, Chagas, E. Belchior Batista Das, Carvalho, W., Chinellato, J., Coelho, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Machine-learning (ML) techniques are explored to identify and classify hadronic decays of highly Lorentz-boosted W/Z/Higgs bosons and top quarks. Techniques without ML have also been evaluated and are included for comparison. The identification performances of a variety of algorithms are characterized in simulated events and directly compared with data. The algorithms are validated using proton-proton collision data at s=13TeV, corresponding to an integrated luminosity of 35.9 fb−1. Systematic uncertainties are assessed by comparing the results obtained using simulation and collision data. The new techniques studied in this paper provide significant performance improvements over non-ML techniques, reducing the background rate by up to an order of magnitude at the same signal efficiency.
ISSN:1748-0221
1748-0221
DOI:10.1088/1748-0221/15/06/P06005