Hybrid Biological–Chemical Approach Offers Flexibility and Reduces the Carbon Footprint of Biobased Plastics, Rubbers, and Fuels

A critical challenge for the bioenergy research community has been producing drop-in hydrocarbon fuels and chemicals at yields sufficient to compete with their petroleum-derived counterparts. Biological production of highly reduced compounds poses fundamental challenges. Conversely, glucose, xylose,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sustainable chemistry & engineering 2018-11, Vol.6 (11), p.14523-14532
Hauptverfasser: Wu, Lipeng, Gokhale, Amit, Goulas, Konstantinos A, Myers, John E, Dean Toste, F, Scown, Corinne D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A critical challenge for the bioenergy research community has been producing drop-in hydrocarbon fuels and chemicals at yields sufficient to compete with their petroleum-derived counterparts. Biological production of highly reduced compounds poses fundamental challenges. Conversely, glucose, xylose, and sucrose can be fermented to ethanol at near-theoretical yields. Just as olefin crackers are often considered a gateway for petrochemical complexes that produce an array of downstream products, catalytic ethanol upgrading can potentially enable an entire biorefining complex able to produce renewable, low-carbon fuels and chemicals. By doping the Ta2O5/SiO2 catalyst with different transition metals, we show that Ostromyslensky catalysts can be utilized for direct conversion of ethanol to varying ratios of 1,3-butadiene (1,3-BD), dietheylether (DEE), and ethylene. These results are integrated into the first comprehensive analysis of ethanol conversion to 1,3-BD, DEE, and ethylene that incorporates empirical data with chemical process modeling and life-cycle greenhouse gas (GHG) assessment. We find that the suite of products can replace conventional rubber, plastics, and diesel, achieving as much as a 150% reduction in GHG-intensity relative to fossil pathways (net carbon sequestration). Selecting the route with the greatest ethylene and DEE output can maximize total potential emission reductions.
ISSN:2168-0485
2168-0485
DOI:10.1021/acssuschemeng.8b03158