Hybrid Biological–Chemical Approach Offers Flexibility and Reduces the Carbon Footprint of Biobased Plastics, Rubbers, and Fuels
A critical challenge for the bioenergy research community has been producing drop-in hydrocarbon fuels and chemicals at yields sufficient to compete with their petroleum-derived counterparts. Biological production of highly reduced compounds poses fundamental challenges. Conversely, glucose, xylose,...
Gespeichert in:
Veröffentlicht in: | ACS sustainable chemistry & engineering 2018-11, Vol.6 (11), p.14523-14532 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A critical challenge for the bioenergy research community has been producing drop-in hydrocarbon fuels and chemicals at yields sufficient to compete with their petroleum-derived counterparts. Biological production of highly reduced compounds poses fundamental challenges. Conversely, glucose, xylose, and sucrose can be fermented to ethanol at near-theoretical yields. Just as olefin crackers are often considered a gateway for petrochemical complexes that produce an array of downstream products, catalytic ethanol upgrading can potentially enable an entire biorefining complex able to produce renewable, low-carbon fuels and chemicals. By doping the Ta2O5/SiO2 catalyst with different transition metals, we show that Ostromyslensky catalysts can be utilized for direct conversion of ethanol to varying ratios of 1,3-butadiene (1,3-BD), dietheylether (DEE), and ethylene. These results are integrated into the first comprehensive analysis of ethanol conversion to 1,3-BD, DEE, and ethylene that incorporates empirical data with chemical process modeling and life-cycle greenhouse gas (GHG) assessment. We find that the suite of products can replace conventional rubber, plastics, and diesel, achieving as much as a 150% reduction in GHG-intensity relative to fossil pathways (net carbon sequestration). Selecting the route with the greatest ethylene and DEE output can maximize total potential emission reductions. |
---|---|
ISSN: | 2168-0485 2168-0485 |
DOI: | 10.1021/acssuschemeng.8b03158 |