Comparison of Fused-Ring Electron Acceptors with One- and Multidimensional Conformations
Three fused-ring electron acceptors (FXIC-1, FXIC-2, and FXIC-3) were designed and synthesized. This FXIC series has similar electron-rich central units and the same electron-poor termini. Due to the different steric structures of fluorene, bifluorenylidene, and spirobifluorene, FXIC-1 is a one-dime...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2020-05, Vol.12 (21), p.23976-23983 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Three fused-ring electron acceptors (FXIC-1, FXIC-2, and FXIC-3) were designed and synthesized. This FXIC series has similar electron-rich central units and the same electron-poor termini. Due to the different steric structures of fluorene, bifluorenylidene, and spirobifluorene, FXIC-1 is a one-dimensional (1D) crystal, while FXIC-2 and FXIC-3 are multidimensional (MD) amorphous materials. The conformations of the FXIC series have a slight impact on their absorption and energy levels. FXIC-1 has higher electron mobility than FXIC-2 and FXIC-3. When blending with different polymer donors (PTB7-Th, J71, and PM7), the FXIC-1-based organic solar cells have efficiencies higher than those of the FXIC-2/FXIC-3-based cells. Meanwhile, the ternary-blend cells based on PTB7-Th:F8IC with FXIC-1, FXIC-2, and FXIC-3 show similar efficiencies, which are all better than those of the binary-blend devices. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.0c04674 |