Hydrothermal corrosion of 2nd generation FeCrAl alloys for accident tolerant fuel cladding

As part of an effort to develop advanced fuel cladding for use in light water reactors, several FeCrAl alloys have been developed at Oak Ridge National Laboratory. A second generation of these alloys bearing additional alloying elements over the previously tested model alloys were tested in boiling...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 2020-08, Vol.536 (C), p.152221, Article 152221
Hauptverfasser: Raiman, Stephen S., Field, Kevin G., Rebak, Raul B., Yamamoto, Yukinori, Terrani, Kurt A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As part of an effort to develop advanced fuel cladding for use in light water reactors, several FeCrAl alloys have been developed at Oak Ridge National Laboratory. A second generation of these alloys bearing additional alloying elements over the previously tested model alloys were tested in boiling water reactor (BWR) conditions to determine their resistance to hydrothermal corrosion. Coupons with alloy compositions Fe–10Cr–6Al–2Mo, Fe–13Cr–5Al–2Mo, Fe–13Cr–6Al–2Mo, Fe–13Cr–7Al–2Mo, and Fe–13Cr–5Al–2Mo–1Nb were tested in normal water chemistry (NWC) and hydrogen water chemistry (HWC) for 9 months in continuously refreshing autoclaves. Commercial FeCrAl alloy APMT and Zircaloy-2 were also tested for comparison. Among samples exposed to HWC, Fe–13Cr–7Al–2Mo performed worst with an average mass loss of 1.3 mg/cm2 over 9 months. This mass loss represents an estimated thickness loss of approximately 60 μm over 6 years. Samples exposed to NWC had very small mass losses of less than 0.15 mg/cm2 or mass gains up to 0.05 mg/cm2. Based on the results of this testing, the 2nd generation FeCrAl alloys tested exhibit low wall thickness loss and are suitable in terms of corrosion resistance for use as LWR cladding in BWR-HWC and BWR-NWC under normal operating conditions.
ISSN:0022-3115
1873-4820
DOI:10.1016/j.jnucmat.2020.152221