Correlating dynamic strain and photoluminescence of solid-state defects with stroboscopic x-ray diffraction microscopy

Control of local lattice perturbations near optically-active defects in quantum materials is a key step to harnessing the potential of solid-state qubits for quantum information science and nanoscale sensing. We report the development of a stroboscopic Scanning X-ray Diffraction Microscopy (s-SXDM)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2019-07, Vol.10 (1)
Hauptverfasser: Whiteley, S. J., Heremans, F. J., Wolfowicz, G., Awschalom, D. D., Holt, M. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Control of local lattice perturbations near optically-active defects in quantum materials is a key step to harnessing the potential of solid-state qubits for quantum information science and nanoscale sensing. We report the development of a stroboscopic Scanning X-ray Diffraction Microscopy (s-SXDM) approach for real-space imaging of dynamic strain used in correlation with microscopic photoluminescence measurements. We demonstrate this technique in the emergent quantum material 4H-SiC, which hosts long-lifetime room temperature vacancy spin defects. Using nano-focused X-ray photon pulses synchronized to a surface acoustic wave launcher, we achieve an effective time resolution of ~100 ps at a 25 nm spatial resolution to map micro-radian dynamic lattice curvatures. The acoustically induced lattice distortions near an engineered scattering structure are correlated with enhanced photoluminescence responses of optically-active SiC quantum defects driven by local piezoelectric effects. These results demonstrate a unique route for directly imaging local strain in nanomechanical structures and quantifying dynamic structure-function relationships in quantum materials under realistic operating conditions.
ISSN:2041-1723
2041-1723