Magnetic Sorbent for the Removal of Selenium(IV) from Simulated Industrial Wastewaters: Determination of Column Kinetic Parameters

A novel meso- and microporous tire-derived-carbon support with magnetic iron oxide nanoparticle adsorbents that selectively adsorbs Se(IV) ions from simulated contaminated water has been developed. In this work, the physicochemical characteristics of the composite adsorbent are characterized with re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2020-05, Vol.12 (5), p.1234
Hauptverfasser: Ying, Andrew, Evans, Samuel F., Tsouris, Costas, Paranthaman, M. Parans
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel meso- and microporous tire-derived-carbon support with magnetic iron oxide nanoparticle adsorbents that selectively adsorbs Se(IV) ions from simulated contaminated water has been developed. In this work, the physicochemical characteristics of the composite adsorbent are characterized with respect to porosity and surface area, chemical composition, and microstructure morphology. The kinetics of this composite adsorbent in a fixed-bed setting has been determined. Several column runs were conducted and analyzed by inductively coupled plasma-optical emission spectroscopy (ICP-OES) to determine the concentration gradient vs time. These results were then fit to a pseudo-second order rate law to obtain equilibrium values. Combining calculated equilibrium values with effluent concentration data, enabled the application of the Adams–Bohart model to determine reaction constants and column coefficients. Column parameters obtained from different flow rates and fittings of the Adams–Bohart model were remarkably consistent. These findings enable the application of this sorbent to fixed-bed column systems and opens up further research into mixed pollutants tests with real wastewater and scaling of selenium pollutant removal.
ISSN:2073-4441
2073-4441
DOI:10.3390/w12051234