Rapid characterization of the activities of lignin-modifying enzymes based on nanostructure-initiator mass spectrometry (NIMS)

Background: Producing valuable fuels and chemicals from lignin is a key factor for making lignocellulosic biomass economically feasible; however, significant roadblocks exist due to our lack of detailed understanding of how lignin is enzymatically depolymerized and of the range of possible lignin fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology for biofuels 2018-09, Vol.11 (1)
Hauptverfasser: Deng, Kai, Zeng, Jijiao, Cheng, Gang, Gao, Jian, Sale, Kenneth L., Simmons, Blake A., Singh, Anup K., Adams, Paul D., Northen, Trent R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: Producing valuable fuels and chemicals from lignin is a key factor for making lignocellulosic biomass economically feasible; however, significant roadblocks exist due to our lack of detailed understanding of how lignin is enzymatically depolymerized and of the range of possible lignin fragments that can be produced. Development of suitable enzymatic assays for characterization of putative lignin active enzymes is an important step towards improving our understanding of the catalytic activities of relevant enzymes. Previously, we have successfully built an assay platform based on glycan substrates containing a charged perfluorinated tag and nanostructure-initiator mass spectrometry to study carbohydrate active enzymes, especially various glycosyl hydrolyses. Here, we extend this approach to develop a reliable and rapid assay to study lignin-modifying enzymes. Results: Two β-aryl ether bond containing model lignin dimer substrates, designed to be suitable for studying the activities of lignin-modifying enzymes (LMEs) by nanostructure-initiator mass spectrometry (NIMS), were successful synthesized. Small-angle neutron scattering experiments showed that these substrates form micelles in solution. Two LMEs, laccase from the polypore mushroom Trametes versicolor, and manganese peroxidase (MnP) from white rot fungus Nematoloma frowardii, were tested for catalytic activity against the two model substrates. We show that the reaction of laccase and MnP with phenolic substrate yields products that arise from the cleavage of the carbon-carbon single bond between the α-carbon and the adjacent aryl carbon, consistent with the mechanism for producing phenoxy radical as reaction intermediates. Reactions of the nonphenolic substrate with laccase, on the other hand, adopt a different pathway by producing an α-oxidation product; as well as the cleavage of the β-aryl ether bond. No cleavage of the carbon-carbon bond between the α-carbon and the aryl carbon was observed. To facilitate understanding of reaction kinetics, the reaction time course for laccase activity on the phenolic substrate (I) was generated by the simultaneous measurement of all products at different time points of the reaction. Withdrawal of only a small sample aliquot (0.2 μL at each time point) ensured minimum perturbation of the reaction. The time course can help us to understand the enzyme kinetics. Conclusions: A new assay procedure has been developed for studying lignin-modifying enzymes by
ISSN:1754-6834
1754-6834