The Role of Surface Oxygen Vacancies in BiVO4

Bismuth vanadate (BiVO4) is a widely studied oxide in solar water splitting, known for its ease of synthesis, high charge extraction yields, and advantageous band alignment with water. We present a combined first-principles and experimental study of the electronic structure of the (010) surface of B...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2020-04, Vol.32 (7), p.2899-2909
Hauptverfasser: Wang, Wennie, Strohbeen, Patrick James, Lee, Dongho, Zhou, Chenyu, Kawasaki, Jason Ken, Choi, Kyoung-Shin, Liu, Mingzhao, Galli, Giulia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bismuth vanadate (BiVO4) is a widely studied oxide in solar water splitting, known for its ease of synthesis, high charge extraction yields, and advantageous band alignment with water. We present a combined first-principles and experimental study of the electronic structure of the (010) surface of BiVO4 aimed at disentangling the impact of the surface and bulk oxygen vacancies on the electronic structure and transport properties. We found that oxygen vacancies are deep donors at the surface as they are in the bulk; our calculations on defect and polaron formation energies suggest that, while polarons formed from oxygen vacancies in the bulk can contribute to conductivity, those at the surface likely do not. Our results also show that out-of-plane structural relaxations at the surface contribute to the relatively immobile nature of electron polarons derived from surface oxygen vacancies. The structural model derived from first-principles calculation was validated by comparing computed results with experimental measurements of single-crystal and epitaxially grown single-crystalline BiVO4 samples. We also found a reasonably good agreement between our calculated and measured work functions for BiVO4 samples with and without oxygen vacancies.
ISSN:0897-4756
1520-5002
DOI:10.1021/acs.chemmater.9b05047