Elastic Single-Ion Conducting Polymer Electrolytes: Toward a Versatile Approach for Intrinsically Stretchable Functional Polymers

Fabrication of stretchable functional polymeric materials usually relies on the physical adhesion between functional components and elastic polymers, while the interfacial resistance is a potential problem. Herein, a versatile approach on the molecular-level intrinsically stretchable polymer materia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecules 2020-05, Vol.53 (9), p.3591-3601
Hauptverfasser: Cao, Peng-Fei, Li, Bingrui, Yang, Guang, Zhao, Sheng, Townsend, Jacob, Xing, Kunyue, Qiang, Zhe, Vogiatzis, Konstantinos D, Sokolov, Alexei P, Nanda, Jagjit, Saito, Tomonori
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3601
container_issue 9
container_start_page 3591
container_title Macromolecules
container_volume 53
creator Cao, Peng-Fei
Li, Bingrui
Yang, Guang
Zhao, Sheng
Townsend, Jacob
Xing, Kunyue
Qiang, Zhe
Vogiatzis, Konstantinos D
Sokolov, Alexei P
Nanda, Jagjit
Saito, Tomonori
description Fabrication of stretchable functional polymeric materials usually relies on the physical adhesion between functional components and elastic polymers, while the interfacial resistance is a potential problem. Herein, a versatile approach on the molecular-level intrinsically stretchable polymer materials with defined functionality is reported. The single-ion conducting polymer electrolytes (SICPEs) were employed to demonstrate the proposed concept along with its potential application in stretchable batteries/electronics with improved energy efficiency and prolonged cell lifetime. The obtained membranes exhibit 88–252% elongation before breaking, and the mechanical properties are well adjustable. The galvanostatic test of the assembled cells using the obtained SICPE membrane exhibited a good cycling performance with a capacity retention of 81.5% after 100 cycles. The applicability of a proposed molecular-level design for intrinsically stretchable polymer materials is further demonstrated in other types of stretchable functional materials, including poly­(vinylcarbazole)-based semiconducting polymers and poly­(ethylene glycol)-based gas separation membranes.
doi_str_mv 10.1021/acs.macromol.9b02683
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1617781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c874902123</sourcerecordid><originalsourceid>FETCH-LOGICAL-a431t-f47617c549e2cfcad34cfa5b1513be1a800ccc51eda1db4020df4ddca57bad063</originalsourceid><addsrcrecordid>eNp9kEFPAjEQhRujiYj-Aw-N98V2t2UXb4SAkpBoAnrdzE67sqS0pC0xHP3nlgBXT5OZee8l7yPkkbMBZzl_BgyDLaB3W2cGo4blw6q4Ij0uc5bJqpDXpMdYLrJRPipvyV0IG8Y4l6Lokd-pgRA7pMvOfhudzZ2lE2fVHmM60A9nDlvt6dRojD4tUYcXunI_4BUF-qV9gNgZTce7nXeAa9o6T-c2-s6GDsGYA11GryOuoUmy2d6mYGfBXKLDPblpwQT9cJ598jmbriZv2eL9dT4ZLzIQBY9ZK8ohL1GKkc6xRVCFwBZkwyUvGs2hYgwRJdcKuGoEy5lqhVIIsmxAsWHRJ0-nXJf61gG7qHGNztrUrOYpu6x4EomTKMEMweu23vluC_5Qc1YfWdeJdX1hXZ9ZJxs72Y7fjdv7VDD8b_kDM5WKjg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Elastic Single-Ion Conducting Polymer Electrolytes: Toward a Versatile Approach for Intrinsically Stretchable Functional Polymers</title><source>American Chemical Society Journals</source><creator>Cao, Peng-Fei ; Li, Bingrui ; Yang, Guang ; Zhao, Sheng ; Townsend, Jacob ; Xing, Kunyue ; Qiang, Zhe ; Vogiatzis, Konstantinos D ; Sokolov, Alexei P ; Nanda, Jagjit ; Saito, Tomonori</creator><creatorcontrib>Cao, Peng-Fei ; Li, Bingrui ; Yang, Guang ; Zhao, Sheng ; Townsend, Jacob ; Xing, Kunyue ; Qiang, Zhe ; Vogiatzis, Konstantinos D ; Sokolov, Alexei P ; Nanda, Jagjit ; Saito, Tomonori ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Fabrication of stretchable functional polymeric materials usually relies on the physical adhesion between functional components and elastic polymers, while the interfacial resistance is a potential problem. Herein, a versatile approach on the molecular-level intrinsically stretchable polymer materials with defined functionality is reported. The single-ion conducting polymer electrolytes (SICPEs) were employed to demonstrate the proposed concept along with its potential application in stretchable batteries/electronics with improved energy efficiency and prolonged cell lifetime. The obtained membranes exhibit 88–252% elongation before breaking, and the mechanical properties are well adjustable. The galvanostatic test of the assembled cells using the obtained SICPE membrane exhibited a good cycling performance with a capacity retention of 81.5% after 100 cycles. The applicability of a proposed molecular-level design for intrinsically stretchable polymer materials is further demonstrated in other types of stretchable functional materials, including poly­(vinylcarbazole)-based semiconducting polymers and poly­(ethylene glycol)-based gas separation membranes.</description><identifier>ISSN: 0024-9297</identifier><identifier>EISSN: 1520-5835</identifier><identifier>DOI: 10.1021/acs.macromol.9b02683</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><ispartof>Macromolecules, 2020-05, Vol.53 (9), p.3591-3601</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a431t-f47617c549e2cfcad34cfa5b1513be1a800ccc51eda1db4020df4ddca57bad063</citedby><cites>FETCH-LOGICAL-a431t-f47617c549e2cfcad34cfa5b1513be1a800ccc51eda1db4020df4ddca57bad063</cites><orcidid>0000-0002-4536-7530 ; 0000-0002-7439-3850 ; 0000-0002-6875-0057 ; 0000-0003-2391-1838 ; 0000-0002-4974-5826 ; 0000-0003-0583-6272 ; 0000-0002-6948-992X ; 0000-0002-8187-9445 ; 000000026948992X ; 0000000268750057 ; 0000000281879445 ; 0000000323911838 ; 0000000274393850 ; 0000000245367530 ; 0000000249745826 ; 0000000305836272</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.macromol.9b02683$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.macromol.9b02683$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1617781$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Peng-Fei</creatorcontrib><creatorcontrib>Li, Bingrui</creatorcontrib><creatorcontrib>Yang, Guang</creatorcontrib><creatorcontrib>Zhao, Sheng</creatorcontrib><creatorcontrib>Townsend, Jacob</creatorcontrib><creatorcontrib>Xing, Kunyue</creatorcontrib><creatorcontrib>Qiang, Zhe</creatorcontrib><creatorcontrib>Vogiatzis, Konstantinos D</creatorcontrib><creatorcontrib>Sokolov, Alexei P</creatorcontrib><creatorcontrib>Nanda, Jagjit</creatorcontrib><creatorcontrib>Saito, Tomonori</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Elastic Single-Ion Conducting Polymer Electrolytes: Toward a Versatile Approach for Intrinsically Stretchable Functional Polymers</title><title>Macromolecules</title><addtitle>Macromolecules</addtitle><description>Fabrication of stretchable functional polymeric materials usually relies on the physical adhesion between functional components and elastic polymers, while the interfacial resistance is a potential problem. Herein, a versatile approach on the molecular-level intrinsically stretchable polymer materials with defined functionality is reported. The single-ion conducting polymer electrolytes (SICPEs) were employed to demonstrate the proposed concept along with its potential application in stretchable batteries/electronics with improved energy efficiency and prolonged cell lifetime. The obtained membranes exhibit 88–252% elongation before breaking, and the mechanical properties are well adjustable. The galvanostatic test of the assembled cells using the obtained SICPE membrane exhibited a good cycling performance with a capacity retention of 81.5% after 100 cycles. The applicability of a proposed molecular-level design for intrinsically stretchable polymer materials is further demonstrated in other types of stretchable functional materials, including poly­(vinylcarbazole)-based semiconducting polymers and poly­(ethylene glycol)-based gas separation membranes.</description><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><issn>0024-9297</issn><issn>1520-5835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEFPAjEQhRujiYj-Aw-N98V2t2UXb4SAkpBoAnrdzE67sqS0pC0xHP3nlgBXT5OZee8l7yPkkbMBZzl_BgyDLaB3W2cGo4blw6q4Ij0uc5bJqpDXpMdYLrJRPipvyV0IG8Y4l6Lokd-pgRA7pMvOfhudzZ2lE2fVHmM60A9nDlvt6dRojD4tUYcXunI_4BUF-qV9gNgZTce7nXeAa9o6T-c2-s6GDsGYA11GryOuoUmy2d6mYGfBXKLDPblpwQT9cJ598jmbriZv2eL9dT4ZLzIQBY9ZK8ohL1GKkc6xRVCFwBZkwyUvGs2hYgwRJdcKuGoEy5lqhVIIsmxAsWHRJ0-nXJf61gG7qHGNztrUrOYpu6x4EomTKMEMweu23vluC_5Qc1YfWdeJdX1hXZ9ZJxs72Y7fjdv7VDD8b_kDM5WKjg</recordid><startdate>20200512</startdate><enddate>20200512</enddate><creator>Cao, Peng-Fei</creator><creator>Li, Bingrui</creator><creator>Yang, Guang</creator><creator>Zhao, Sheng</creator><creator>Townsend, Jacob</creator><creator>Xing, Kunyue</creator><creator>Qiang, Zhe</creator><creator>Vogiatzis, Konstantinos D</creator><creator>Sokolov, Alexei P</creator><creator>Nanda, Jagjit</creator><creator>Saito, Tomonori</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4536-7530</orcidid><orcidid>https://orcid.org/0000-0002-7439-3850</orcidid><orcidid>https://orcid.org/0000-0002-6875-0057</orcidid><orcidid>https://orcid.org/0000-0003-2391-1838</orcidid><orcidid>https://orcid.org/0000-0002-4974-5826</orcidid><orcidid>https://orcid.org/0000-0003-0583-6272</orcidid><orcidid>https://orcid.org/0000-0002-6948-992X</orcidid><orcidid>https://orcid.org/0000-0002-8187-9445</orcidid><orcidid>https://orcid.org/000000026948992X</orcidid><orcidid>https://orcid.org/0000000268750057</orcidid><orcidid>https://orcid.org/0000000281879445</orcidid><orcidid>https://orcid.org/0000000323911838</orcidid><orcidid>https://orcid.org/0000000274393850</orcidid><orcidid>https://orcid.org/0000000245367530</orcidid><orcidid>https://orcid.org/0000000249745826</orcidid><orcidid>https://orcid.org/0000000305836272</orcidid></search><sort><creationdate>20200512</creationdate><title>Elastic Single-Ion Conducting Polymer Electrolytes: Toward a Versatile Approach for Intrinsically Stretchable Functional Polymers</title><author>Cao, Peng-Fei ; Li, Bingrui ; Yang, Guang ; Zhao, Sheng ; Townsend, Jacob ; Xing, Kunyue ; Qiang, Zhe ; Vogiatzis, Konstantinos D ; Sokolov, Alexei P ; Nanda, Jagjit ; Saito, Tomonori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a431t-f47617c549e2cfcad34cfa5b1513be1a800ccc51eda1db4020df4ddca57bad063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Peng-Fei</creatorcontrib><creatorcontrib>Li, Bingrui</creatorcontrib><creatorcontrib>Yang, Guang</creatorcontrib><creatorcontrib>Zhao, Sheng</creatorcontrib><creatorcontrib>Townsend, Jacob</creatorcontrib><creatorcontrib>Xing, Kunyue</creatorcontrib><creatorcontrib>Qiang, Zhe</creatorcontrib><creatorcontrib>Vogiatzis, Konstantinos D</creatorcontrib><creatorcontrib>Sokolov, Alexei P</creatorcontrib><creatorcontrib>Nanda, Jagjit</creatorcontrib><creatorcontrib>Saito, Tomonori</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Peng-Fei</au><au>Li, Bingrui</au><au>Yang, Guang</au><au>Zhao, Sheng</au><au>Townsend, Jacob</au><au>Xing, Kunyue</au><au>Qiang, Zhe</au><au>Vogiatzis, Konstantinos D</au><au>Sokolov, Alexei P</au><au>Nanda, Jagjit</au><au>Saito, Tomonori</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elastic Single-Ion Conducting Polymer Electrolytes: Toward a Versatile Approach for Intrinsically Stretchable Functional Polymers</atitle><jtitle>Macromolecules</jtitle><addtitle>Macromolecules</addtitle><date>2020-05-12</date><risdate>2020</risdate><volume>53</volume><issue>9</issue><spage>3591</spage><epage>3601</epage><pages>3591-3601</pages><issn>0024-9297</issn><eissn>1520-5835</eissn><abstract>Fabrication of stretchable functional polymeric materials usually relies on the physical adhesion between functional components and elastic polymers, while the interfacial resistance is a potential problem. Herein, a versatile approach on the molecular-level intrinsically stretchable polymer materials with defined functionality is reported. The single-ion conducting polymer electrolytes (SICPEs) were employed to demonstrate the proposed concept along with its potential application in stretchable batteries/electronics with improved energy efficiency and prolonged cell lifetime. The obtained membranes exhibit 88–252% elongation before breaking, and the mechanical properties are well adjustable. The galvanostatic test of the assembled cells using the obtained SICPE membrane exhibited a good cycling performance with a capacity retention of 81.5% after 100 cycles. The applicability of a proposed molecular-level design for intrinsically stretchable polymer materials is further demonstrated in other types of stretchable functional materials, including poly­(vinylcarbazole)-based semiconducting polymers and poly­(ethylene glycol)-based gas separation membranes.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.macromol.9b02683</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4536-7530</orcidid><orcidid>https://orcid.org/0000-0002-7439-3850</orcidid><orcidid>https://orcid.org/0000-0002-6875-0057</orcidid><orcidid>https://orcid.org/0000-0003-2391-1838</orcidid><orcidid>https://orcid.org/0000-0002-4974-5826</orcidid><orcidid>https://orcid.org/0000-0003-0583-6272</orcidid><orcidid>https://orcid.org/0000-0002-6948-992X</orcidid><orcidid>https://orcid.org/0000-0002-8187-9445</orcidid><orcidid>https://orcid.org/000000026948992X</orcidid><orcidid>https://orcid.org/0000000268750057</orcidid><orcidid>https://orcid.org/0000000281879445</orcidid><orcidid>https://orcid.org/0000000323911838</orcidid><orcidid>https://orcid.org/0000000274393850</orcidid><orcidid>https://orcid.org/0000000245367530</orcidid><orcidid>https://orcid.org/0000000249745826</orcidid><orcidid>https://orcid.org/0000000305836272</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-9297
ispartof Macromolecules, 2020-05, Vol.53 (9), p.3591-3601
issn 0024-9297
1520-5835
language eng
recordid cdi_osti_scitechconnect_1617781
source American Chemical Society Journals
subjects INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
title Elastic Single-Ion Conducting Polymer Electrolytes: Toward a Versatile Approach for Intrinsically Stretchable Functional Polymers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A19%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elastic%20Single-Ion%20Conducting%20Polymer%20Electrolytes:%20Toward%20a%20Versatile%20Approach%20for%20Intrinsically%20Stretchable%20Functional%20Polymers&rft.jtitle=Macromolecules&rft.au=Cao,%20Peng-Fei&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2020-05-12&rft.volume=53&rft.issue=9&rft.spage=3591&rft.epage=3601&rft.pages=3591-3601&rft.issn=0024-9297&rft.eissn=1520-5835&rft_id=info:doi/10.1021/acs.macromol.9b02683&rft_dat=%3Cacs_osti_%3Ec874902123%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true