Elastic Single-Ion Conducting Polymer Electrolytes: Toward a Versatile Approach for Intrinsically Stretchable Functional Polymers
Fabrication of stretchable functional polymeric materials usually relies on the physical adhesion between functional components and elastic polymers, while the interfacial resistance is a potential problem. Herein, a versatile approach on the molecular-level intrinsically stretchable polymer materia...
Gespeichert in:
Veröffentlicht in: | Macromolecules 2020-05, Vol.53 (9), p.3591-3601 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fabrication of stretchable functional polymeric materials usually relies on the physical adhesion between functional components and elastic polymers, while the interfacial resistance is a potential problem. Herein, a versatile approach on the molecular-level intrinsically stretchable polymer materials with defined functionality is reported. The single-ion conducting polymer electrolytes (SICPEs) were employed to demonstrate the proposed concept along with its potential application in stretchable batteries/electronics with improved energy efficiency and prolonged cell lifetime. The obtained membranes exhibit 88–252% elongation before breaking, and the mechanical properties are well adjustable. The galvanostatic test of the assembled cells using the obtained SICPE membrane exhibited a good cycling performance with a capacity retention of 81.5% after 100 cycles. The applicability of a proposed molecular-level design for intrinsically stretchable polymer materials is further demonstrated in other types of stretchable functional materials, including poly(vinylcarbazole)-based semiconducting polymers and poly(ethylene glycol)-based gas separation membranes. |
---|---|
ISSN: | 0024-9297 1520-5835 |
DOI: | 10.1021/acs.macromol.9b02683 |