Elastic Single-Ion Conducting Polymer Electrolytes: Toward a Versatile Approach for Intrinsically Stretchable Functional Polymers

Fabrication of stretchable functional polymeric materials usually relies on the physical adhesion between functional components and elastic polymers, while the interfacial resistance is a potential problem. Herein, a versatile approach on the molecular-level intrinsically stretchable polymer materia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecules 2020-05, Vol.53 (9), p.3591-3601
Hauptverfasser: Cao, Peng-Fei, Li, Bingrui, Yang, Guang, Zhao, Sheng, Townsend, Jacob, Xing, Kunyue, Qiang, Zhe, Vogiatzis, Konstantinos D, Sokolov, Alexei P, Nanda, Jagjit, Saito, Tomonori
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fabrication of stretchable functional polymeric materials usually relies on the physical adhesion between functional components and elastic polymers, while the interfacial resistance is a potential problem. Herein, a versatile approach on the molecular-level intrinsically stretchable polymer materials with defined functionality is reported. The single-ion conducting polymer electrolytes (SICPEs) were employed to demonstrate the proposed concept along with its potential application in stretchable batteries/electronics with improved energy efficiency and prolonged cell lifetime. The obtained membranes exhibit 88–252% elongation before breaking, and the mechanical properties are well adjustable. The galvanostatic test of the assembled cells using the obtained SICPE membrane exhibited a good cycling performance with a capacity retention of 81.5% after 100 cycles. The applicability of a proposed molecular-level design for intrinsically stretchable polymer materials is further demonstrated in other types of stretchable functional materials, including poly­(vinylcarbazole)-based semiconducting polymers and poly­(ethylene glycol)-based gas separation membranes.
ISSN:0024-9297
1520-5835
DOI:10.1021/acs.macromol.9b02683