Cyclotron radiation emission spectroscopy signal classification with machine learning in project 8
The cyclotron radiation emission spectroscopy (CRES) technique pioneered by Project 8 measures electromagnetic radiation from individual electrons gyrating in a background magnetic field to construct a highly precise energy spectrum for beta decay studies and other applications. The detector, magnet...
Gespeichert in:
Veröffentlicht in: | New journal of physics 2020-03, Vol.22 (3), p.33004 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 33004 |
container_title | New journal of physics |
container_volume | 22 |
creator | Esfahani, A Ashtari Böser, S Buzinsky, N Cervantes, R Claessens, C Viveiros, L de Fertl, M Formaggio, J A Gladstone, L Guigue, M Heeger, K M Johnston, J Jones, A M Kazkaz, K LaRoque, B H Lindman, A Machado, E Monreal, B Morrison, E C Nikkel, J A Novitski, E Oblath, N S Pettus, W Robertson, R G H Rybka, G Saldaña, L Sibille, V Schram, M Slocum, P L Sun, Y-H Thümmler, T VanDevender, B A Weiss, T E Wendler, T Zayas, E |
description | The cyclotron radiation emission spectroscopy (CRES) technique pioneered by Project 8 measures electromagnetic radiation from individual electrons gyrating in a background magnetic field to construct a highly precise energy spectrum for beta decay studies and other applications. The detector, magnetic trap geometry and electron dynamics give rise to a multitude of complex electron signal structures which carry information about distinguishing physical traits. With machine learning models, we develop a scheme based on these traits to analyze and classify CRES signals. Proper understanding and use of these traits will be instrumental to improve cyclotron frequency reconstruction and boost the potential of Project 8 to achieve world-leading sensitivity on the tritium endpoint measurement in the future. |
doi_str_mv | 10.1088/1367-2630/ab71bd |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1616702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_54e59a8e97ff4748a02232cfd578aca3</doaj_id><sourcerecordid>2404322797</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-f696333d7cf4f35e4afb06e559c55d9a140e787e32d7970a61ed1e883ba87663</originalsourceid><addsrcrecordid>eNp1kbuPFDEMxkcIJI6DnnIEBQ3L5Z1MiVY8TjqJ5nrLk8duRrPJkMwJ7X9PlkEHBVS27J8_2f667jUlHygx5oZypXdMcXKDo6aje9JdPZae_pU_717UOhFCqWHsqhv3ZzvnteTUF3QR19gyf4q1XpK6eNt61ebl3Nd4SDj3dsbWDNFu7I-4HvsT2mNMvp89lhTToY-pX0qe2nRvXnbPAs7Vv_odr7v7z5_u9193d9--3O4_3u2s0HLdBTUozrnTNojApRcYRqK8lIOV0g1IBfHaaM-Z04MmqKh31BvDRzRaKX7d3W6yLuMES4knLGfIGOFXIZcDYFmjnT1I4eWAxg86BKGFQcIYZzY4qQ1a5E3rzaaV6xqh2rh6e7Q5pXYQUEWVJqxBbzeoXfr9wdcVpvxQ2osqMEEEZ6zt2SiyUbb9sRYfHlejBC7OwcUauFgDm3Nt5N02EvPyRzNNCzAGHAjnhAhYXGjk-3-Q_xX-CesOp7A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404322797</pqid></control><display><type>article</type><title>Cyclotron radiation emission spectroscopy signal classification with machine learning in project 8</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Esfahani, A Ashtari ; Böser, S ; Buzinsky, N ; Cervantes, R ; Claessens, C ; Viveiros, L de ; Fertl, M ; Formaggio, J A ; Gladstone, L ; Guigue, M ; Heeger, K M ; Johnston, J ; Jones, A M ; Kazkaz, K ; LaRoque, B H ; Lindman, A ; Machado, E ; Monreal, B ; Morrison, E C ; Nikkel, J A ; Novitski, E ; Oblath, N S ; Pettus, W ; Robertson, R G H ; Rybka, G ; Saldaña, L ; Sibille, V ; Schram, M ; Slocum, P L ; Sun, Y-H ; Thümmler, T ; VanDevender, B A ; Weiss, T E ; Wendler, T ; Zayas, E</creator><creatorcontrib>Esfahani, A Ashtari ; Böser, S ; Buzinsky, N ; Cervantes, R ; Claessens, C ; Viveiros, L de ; Fertl, M ; Formaggio, J A ; Gladstone, L ; Guigue, M ; Heeger, K M ; Johnston, J ; Jones, A M ; Kazkaz, K ; LaRoque, B H ; Lindman, A ; Machado, E ; Monreal, B ; Morrison, E C ; Nikkel, J A ; Novitski, E ; Oblath, N S ; Pettus, W ; Robertson, R G H ; Rybka, G ; Saldaña, L ; Sibille, V ; Schram, M ; Slocum, P L ; Sun, Y-H ; Thümmler, T ; VanDevender, B A ; Weiss, T E ; Wendler, T ; Zayas, E ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) ; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><description>The cyclotron radiation emission spectroscopy (CRES) technique pioneered by Project 8 measures electromagnetic radiation from individual electrons gyrating in a background magnetic field to construct a highly precise energy spectrum for beta decay studies and other applications. The detector, magnetic trap geometry and electron dynamics give rise to a multitude of complex electron signal structures which carry information about distinguishing physical traits. With machine learning models, we develop a scheme based on these traits to analyze and classify CRES signals. Proper understanding and use of these traits will be instrumental to improve cyclotron frequency reconstruction and boost the potential of Project 8 to achieve world-leading sensitivity on the tritium endpoint measurement in the future.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/ab71bd</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Beta decay ; Cyclotron frequency ; Cyclotron radiation ; Cyclotrons ; Electromagnetic radiation ; Emission spectroscopy ; Energy spectra ; Machine learning ; neutrino mass ; NUCLEAR PHYSICS AND RADIATION PHYSICS ; Physics ; Signal classification ; Spectrum analysis ; support vector machine ; Tritium</subject><ispartof>New journal of physics, 2020-03, Vol.22 (3), p.33004</ispartof><rights>2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-f696333d7cf4f35e4afb06e559c55d9a140e787e32d7970a61ed1e883ba87663</citedby><cites>FETCH-LOGICAL-c475t-f696333d7cf4f35e4afb06e559c55d9a140e787e32d7970a61ed1e883ba87663</cites><orcidid>0000-0001-9973-1564 ; 0000-0002-3757-9883 ; 0000-0002-4027-3746 ; 0000-0002-2444-7857 ; 0000000237579883 ; 0000000240273746 ; 0000000224447857 ; 0000000199731564</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1367-2630/ab71bd/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,776,780,860,881,2096,27901,27902,38845,38867,53815,53842</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1616702$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Esfahani, A Ashtari</creatorcontrib><creatorcontrib>Böser, S</creatorcontrib><creatorcontrib>Buzinsky, N</creatorcontrib><creatorcontrib>Cervantes, R</creatorcontrib><creatorcontrib>Claessens, C</creatorcontrib><creatorcontrib>Viveiros, L de</creatorcontrib><creatorcontrib>Fertl, M</creatorcontrib><creatorcontrib>Formaggio, J A</creatorcontrib><creatorcontrib>Gladstone, L</creatorcontrib><creatorcontrib>Guigue, M</creatorcontrib><creatorcontrib>Heeger, K M</creatorcontrib><creatorcontrib>Johnston, J</creatorcontrib><creatorcontrib>Jones, A M</creatorcontrib><creatorcontrib>Kazkaz, K</creatorcontrib><creatorcontrib>LaRoque, B H</creatorcontrib><creatorcontrib>Lindman, A</creatorcontrib><creatorcontrib>Machado, E</creatorcontrib><creatorcontrib>Monreal, B</creatorcontrib><creatorcontrib>Morrison, E C</creatorcontrib><creatorcontrib>Nikkel, J A</creatorcontrib><creatorcontrib>Novitski, E</creatorcontrib><creatorcontrib>Oblath, N S</creatorcontrib><creatorcontrib>Pettus, W</creatorcontrib><creatorcontrib>Robertson, R G H</creatorcontrib><creatorcontrib>Rybka, G</creatorcontrib><creatorcontrib>Saldaña, L</creatorcontrib><creatorcontrib>Sibille, V</creatorcontrib><creatorcontrib>Schram, M</creatorcontrib><creatorcontrib>Slocum, P L</creatorcontrib><creatorcontrib>Sun, Y-H</creatorcontrib><creatorcontrib>Thümmler, T</creatorcontrib><creatorcontrib>VanDevender, B A</creatorcontrib><creatorcontrib>Weiss, T E</creatorcontrib><creatorcontrib>Wendler, T</creatorcontrib><creatorcontrib>Zayas, E</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><title>Cyclotron radiation emission spectroscopy signal classification with machine learning in project 8</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>The cyclotron radiation emission spectroscopy (CRES) technique pioneered by Project 8 measures electromagnetic radiation from individual electrons gyrating in a background magnetic field to construct a highly precise energy spectrum for beta decay studies and other applications. The detector, magnetic trap geometry and electron dynamics give rise to a multitude of complex electron signal structures which carry information about distinguishing physical traits. With machine learning models, we develop a scheme based on these traits to analyze and classify CRES signals. Proper understanding and use of these traits will be instrumental to improve cyclotron frequency reconstruction and boost the potential of Project 8 to achieve world-leading sensitivity on the tritium endpoint measurement in the future.</description><subject>Beta decay</subject><subject>Cyclotron frequency</subject><subject>Cyclotron radiation</subject><subject>Cyclotrons</subject><subject>Electromagnetic radiation</subject><subject>Emission spectroscopy</subject><subject>Energy spectra</subject><subject>Machine learning</subject><subject>neutrino mass</subject><subject>NUCLEAR PHYSICS AND RADIATION PHYSICS</subject><subject>Physics</subject><subject>Signal classification</subject><subject>Spectrum analysis</subject><subject>support vector machine</subject><subject>Tritium</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp1kbuPFDEMxkcIJI6DnnIEBQ3L5Z1MiVY8TjqJ5nrLk8duRrPJkMwJ7X9PlkEHBVS27J8_2f667jUlHygx5oZypXdMcXKDo6aje9JdPZae_pU_717UOhFCqWHsqhv3ZzvnteTUF3QR19gyf4q1XpK6eNt61ebl3Nd4SDj3dsbWDNFu7I-4HvsT2mNMvp89lhTToY-pX0qe2nRvXnbPAs7Vv_odr7v7z5_u9193d9--3O4_3u2s0HLdBTUozrnTNojApRcYRqK8lIOV0g1IBfHaaM-Z04MmqKh31BvDRzRaKX7d3W6yLuMES4knLGfIGOFXIZcDYFmjnT1I4eWAxg86BKGFQcIYZzY4qQ1a5E3rzaaV6xqh2rh6e7Q5pXYQUEWVJqxBbzeoXfr9wdcVpvxQ2osqMEEEZ6zt2SiyUbb9sRYfHlejBC7OwcUauFgDm3Nt5N02EvPyRzNNCzAGHAjnhAhYXGjk-3-Q_xX-CesOp7A</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Esfahani, A Ashtari</creator><creator>Böser, S</creator><creator>Buzinsky, N</creator><creator>Cervantes, R</creator><creator>Claessens, C</creator><creator>Viveiros, L de</creator><creator>Fertl, M</creator><creator>Formaggio, J A</creator><creator>Gladstone, L</creator><creator>Guigue, M</creator><creator>Heeger, K M</creator><creator>Johnston, J</creator><creator>Jones, A M</creator><creator>Kazkaz, K</creator><creator>LaRoque, B H</creator><creator>Lindman, A</creator><creator>Machado, E</creator><creator>Monreal, B</creator><creator>Morrison, E C</creator><creator>Nikkel, J A</creator><creator>Novitski, E</creator><creator>Oblath, N S</creator><creator>Pettus, W</creator><creator>Robertson, R G H</creator><creator>Rybka, G</creator><creator>Saldaña, L</creator><creator>Sibille, V</creator><creator>Schram, M</creator><creator>Slocum, P L</creator><creator>Sun, Y-H</creator><creator>Thümmler, T</creator><creator>VanDevender, B A</creator><creator>Weiss, T E</creator><creator>Wendler, T</creator><creator>Zayas, E</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9973-1564</orcidid><orcidid>https://orcid.org/0000-0002-3757-9883</orcidid><orcidid>https://orcid.org/0000-0002-4027-3746</orcidid><orcidid>https://orcid.org/0000-0002-2444-7857</orcidid><orcidid>https://orcid.org/0000000237579883</orcidid><orcidid>https://orcid.org/0000000240273746</orcidid><orcidid>https://orcid.org/0000000224447857</orcidid><orcidid>https://orcid.org/0000000199731564</orcidid></search><sort><creationdate>20200301</creationdate><title>Cyclotron radiation emission spectroscopy signal classification with machine learning in project 8</title><author>Esfahani, A Ashtari ; Böser, S ; Buzinsky, N ; Cervantes, R ; Claessens, C ; Viveiros, L de ; Fertl, M ; Formaggio, J A ; Gladstone, L ; Guigue, M ; Heeger, K M ; Johnston, J ; Jones, A M ; Kazkaz, K ; LaRoque, B H ; Lindman, A ; Machado, E ; Monreal, B ; Morrison, E C ; Nikkel, J A ; Novitski, E ; Oblath, N S ; Pettus, W ; Robertson, R G H ; Rybka, G ; Saldaña, L ; Sibille, V ; Schram, M ; Slocum, P L ; Sun, Y-H ; Thümmler, T ; VanDevender, B A ; Weiss, T E ; Wendler, T ; Zayas, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-f696333d7cf4f35e4afb06e559c55d9a140e787e32d7970a61ed1e883ba87663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Beta decay</topic><topic>Cyclotron frequency</topic><topic>Cyclotron radiation</topic><topic>Cyclotrons</topic><topic>Electromagnetic radiation</topic><topic>Emission spectroscopy</topic><topic>Energy spectra</topic><topic>Machine learning</topic><topic>neutrino mass</topic><topic>NUCLEAR PHYSICS AND RADIATION PHYSICS</topic><topic>Physics</topic><topic>Signal classification</topic><topic>Spectrum analysis</topic><topic>support vector machine</topic><topic>Tritium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Esfahani, A Ashtari</creatorcontrib><creatorcontrib>Böser, S</creatorcontrib><creatorcontrib>Buzinsky, N</creatorcontrib><creatorcontrib>Cervantes, R</creatorcontrib><creatorcontrib>Claessens, C</creatorcontrib><creatorcontrib>Viveiros, L de</creatorcontrib><creatorcontrib>Fertl, M</creatorcontrib><creatorcontrib>Formaggio, J A</creatorcontrib><creatorcontrib>Gladstone, L</creatorcontrib><creatorcontrib>Guigue, M</creatorcontrib><creatorcontrib>Heeger, K M</creatorcontrib><creatorcontrib>Johnston, J</creatorcontrib><creatorcontrib>Jones, A M</creatorcontrib><creatorcontrib>Kazkaz, K</creatorcontrib><creatorcontrib>LaRoque, B H</creatorcontrib><creatorcontrib>Lindman, A</creatorcontrib><creatorcontrib>Machado, E</creatorcontrib><creatorcontrib>Monreal, B</creatorcontrib><creatorcontrib>Morrison, E C</creatorcontrib><creatorcontrib>Nikkel, J A</creatorcontrib><creatorcontrib>Novitski, E</creatorcontrib><creatorcontrib>Oblath, N S</creatorcontrib><creatorcontrib>Pettus, W</creatorcontrib><creatorcontrib>Robertson, R G H</creatorcontrib><creatorcontrib>Rybka, G</creatorcontrib><creatorcontrib>Saldaña, L</creatorcontrib><creatorcontrib>Sibille, V</creatorcontrib><creatorcontrib>Schram, M</creatorcontrib><creatorcontrib>Slocum, P L</creatorcontrib><creatorcontrib>Sun, Y-H</creatorcontrib><creatorcontrib>Thümmler, T</creatorcontrib><creatorcontrib>VanDevender, B A</creatorcontrib><creatorcontrib>Weiss, T E</creatorcontrib><creatorcontrib>Wendler, T</creatorcontrib><creatorcontrib>Zayas, E</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esfahani, A Ashtari</au><au>Böser, S</au><au>Buzinsky, N</au><au>Cervantes, R</au><au>Claessens, C</au><au>Viveiros, L de</au><au>Fertl, M</au><au>Formaggio, J A</au><au>Gladstone, L</au><au>Guigue, M</au><au>Heeger, K M</au><au>Johnston, J</au><au>Jones, A M</au><au>Kazkaz, K</au><au>LaRoque, B H</au><au>Lindman, A</au><au>Machado, E</au><au>Monreal, B</au><au>Morrison, E C</au><au>Nikkel, J A</au><au>Novitski, E</au><au>Oblath, N S</au><au>Pettus, W</au><au>Robertson, R G H</au><au>Rybka, G</au><au>Saldaña, L</au><au>Sibille, V</au><au>Schram, M</au><au>Slocum, P L</au><au>Sun, Y-H</au><au>Thümmler, T</au><au>VanDevender, B A</au><au>Weiss, T E</au><au>Wendler, T</au><au>Zayas, E</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><aucorp>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cyclotron radiation emission spectroscopy signal classification with machine learning in project 8</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>22</volume><issue>3</issue><spage>33004</spage><pages>33004-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>The cyclotron radiation emission spectroscopy (CRES) technique pioneered by Project 8 measures electromagnetic radiation from individual electrons gyrating in a background magnetic field to construct a highly precise energy spectrum for beta decay studies and other applications. The detector, magnetic trap geometry and electron dynamics give rise to a multitude of complex electron signal structures which carry information about distinguishing physical traits. With machine learning models, we develop a scheme based on these traits to analyze and classify CRES signals. Proper understanding and use of these traits will be instrumental to improve cyclotron frequency reconstruction and boost the potential of Project 8 to achieve world-leading sensitivity on the tritium endpoint measurement in the future.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/ab71bd</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-9973-1564</orcidid><orcidid>https://orcid.org/0000-0002-3757-9883</orcidid><orcidid>https://orcid.org/0000-0002-4027-3746</orcidid><orcidid>https://orcid.org/0000-0002-2444-7857</orcidid><orcidid>https://orcid.org/0000000237579883</orcidid><orcidid>https://orcid.org/0000000240273746</orcidid><orcidid>https://orcid.org/0000000224447857</orcidid><orcidid>https://orcid.org/0000000199731564</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-2630 |
ispartof | New journal of physics, 2020-03, Vol.22 (3), p.33004 |
issn | 1367-2630 1367-2630 |
language | eng |
recordid | cdi_osti_scitechconnect_1616702 |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Beta decay Cyclotron frequency Cyclotron radiation Cyclotrons Electromagnetic radiation Emission spectroscopy Energy spectra Machine learning neutrino mass NUCLEAR PHYSICS AND RADIATION PHYSICS Physics Signal classification Spectrum analysis support vector machine Tritium |
title | Cyclotron radiation emission spectroscopy signal classification with machine learning in project 8 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A42%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cyclotron%20radiation%20emission%20spectroscopy%20signal%20classification%20with%20machine%20learning%20in%20project%208&rft.jtitle=New%20journal%20of%20physics&rft.au=Esfahani,%20A%20Ashtari&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2020-03-01&rft.volume=22&rft.issue=3&rft.spage=33004&rft.pages=33004-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/ab71bd&rft_dat=%3Cproquest_osti_%3E2404322797%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404322797&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_54e59a8e97ff4748a02232cfd578aca3&rfr_iscdi=true |