Cyclotron radiation emission spectroscopy signal classification with machine learning in project 8

The cyclotron radiation emission spectroscopy (CRES) technique pioneered by Project 8 measures electromagnetic radiation from individual electrons gyrating in a background magnetic field to construct a highly precise energy spectrum for beta decay studies and other applications. The detector, magnet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of physics 2020-03, Vol.22 (3), p.33004
Hauptverfasser: Esfahani, A Ashtari, Böser, S, Buzinsky, N, Cervantes, R, Claessens, C, Viveiros, L de, Fertl, M, Formaggio, J A, Gladstone, L, Guigue, M, Heeger, K M, Johnston, J, Jones, A M, Kazkaz, K, LaRoque, B H, Lindman, A, Machado, E, Monreal, B, Morrison, E C, Nikkel, J A, Novitski, E, Oblath, N S, Pettus, W, Robertson, R G H, Rybka, G, Saldaña, L, Sibille, V, Schram, M, Slocum, P L, Sun, Y-H, Thümmler, T, VanDevender, B A, Weiss, T E, Wendler, T, Zayas, E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The cyclotron radiation emission spectroscopy (CRES) technique pioneered by Project 8 measures electromagnetic radiation from individual electrons gyrating in a background magnetic field to construct a highly precise energy spectrum for beta decay studies and other applications. The detector, magnetic trap geometry and electron dynamics give rise to a multitude of complex electron signal structures which carry information about distinguishing physical traits. With machine learning models, we develop a scheme based on these traits to analyze and classify CRES signals. Proper understanding and use of these traits will be instrumental to improve cyclotron frequency reconstruction and boost the potential of Project 8 to achieve world-leading sensitivity on the tritium endpoint measurement in the future.
ISSN:1367-2630
1367-2630
DOI:10.1088/1367-2630/ab71bd