Selective nitrogen adsorption via backbonding in a metal–organic framework with exposed vanadium sites

Industrial processes prominently feature π-acidic gases, and an adsorbent capable of selectively interacting with these molecules could enable important chemical separations 1 – 4 . Biological systems use accessible, reducing metal centres to bind and activate weakly π-acidic species, such as N 2 ,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2020-05, Vol.19 (5), p.517-521
Hauptverfasser: Jaramillo, David E., Reed, Douglas A., Jiang, Henry Z. H., Oktawiec, Julia, Mara, Michael W., Forse, Alexander C., Lussier, Daniel J., Murphy, Ryan A., Cunningham, Marc, Colombo, Valentina, Shuh, David K., Reimer, Jeffrey A., Long, Jeffrey R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 521
container_issue 5
container_start_page 517
container_title Nature materials
container_volume 19
creator Jaramillo, David E.
Reed, Douglas A.
Jiang, Henry Z. H.
Oktawiec, Julia
Mara, Michael W.
Forse, Alexander C.
Lussier, Daniel J.
Murphy, Ryan A.
Cunningham, Marc
Colombo, Valentina
Shuh, David K.
Reimer, Jeffrey A.
Long, Jeffrey R.
description Industrial processes prominently feature π-acidic gases, and an adsorbent capable of selectively interacting with these molecules could enable important chemical separations 1 – 4 . Biological systems use accessible, reducing metal centres to bind and activate weakly π-acidic species, such as N 2 , through backbonding interactions 5 – 7 , and incorporating analogous moieties into a porous material should give rise to a similar adsorption mechanism for these gaseous substrates 8 . Here, we report a metal–organic framework featuring exposed vanadium( ii ) centres capable of back-donating electron density to weak π acids to successfully target π acidity for separation applications. This adsorption mechanism, together with a high concentration of available adsorption sites, results in record N 2 capacities and selectivities for the removal of N 2 from mixtures with CH 4 , while further enabling olefin/paraffin separations at elevated temperatures. Ultimately, incorporating such π-basic metal centres into porous materials offers a handle for capturing and activating key molecular species within next-generation adsorbents. Nitrogenases use transition metals to selectively capture weak π acids such as N 2 by employing backbonding interactions. Here, a metal–organic framework with exposed vanadium sites is presented that uses this approach for selective capture of N 2 from CH 4 , with impressive selectivity and capacity.
doi_str_mv 10.1038/s41563-019-0597-8
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1616600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2350904708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-b1be43bf6f6fbcc1c9b8aed7613ee68ee97f53df35b9e0691ae94e8ac0512c1b3</originalsourceid><addsrcrecordid>eNp9kc9u1DAQxiMEoqXwAFyQBRcuAf9PfERVW5AqcQDOlu1Mdt0m9mI7W7jxDrwhT4JXWUBCAs3BI81vvk_jr2meEvyKYNa_zpwIyVpMVIuF6tr-XnNKeCdbLiW-f-wJofSkeZTzDcaUCCEfNieM4toxftpsP8AErvg9oOBLihsIyAw5pl3xMaC9N8gad2tjGHzYIF-naIZiph_fvse0McE7NCYzw11Mt-jOly2CL7uYYUB7E8zglxllXyA_bh6MZsrw5PieNZ8uLz6ev22v31-9O39z3TqBu9JaYoEzO8pa1jnilO0NDJ0kDED2AKobBRtGJqwCLBUxoDj0xmFBqCOWnTXPV92Yi9fZVW-3dTGEeqUmktSfwRV6uUK7FD8vkIuefXYwTSZAXLKmTGCFeYf7ir74C72JSwr1BE15x5XCkrL_UkxxQelqS1bKpZhzglHvkp9N-qoJ1odE9ZqoronqQ6L64P_sqLzYGYbfG78irABdgVxHYQPpj_W_VX8CdZKtFA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2394522600</pqid></control><display><type>article</type><title>Selective nitrogen adsorption via backbonding in a metal–organic framework with exposed vanadium sites</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Jaramillo, David E. ; Reed, Douglas A. ; Jiang, Henry Z. H. ; Oktawiec, Julia ; Mara, Michael W. ; Forse, Alexander C. ; Lussier, Daniel J. ; Murphy, Ryan A. ; Cunningham, Marc ; Colombo, Valentina ; Shuh, David K. ; Reimer, Jeffrey A. ; Long, Jeffrey R.</creator><creatorcontrib>Jaramillo, David E. ; Reed, Douglas A. ; Jiang, Henry Z. H. ; Oktawiec, Julia ; Mara, Michael W. ; Forse, Alexander C. ; Lussier, Daniel J. ; Murphy, Ryan A. ; Cunningham, Marc ; Colombo, Valentina ; Shuh, David K. ; Reimer, Jeffrey A. ; Long, Jeffrey R. ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Industrial processes prominently feature π-acidic gases, and an adsorbent capable of selectively interacting with these molecules could enable important chemical separations 1 – 4 . Biological systems use accessible, reducing metal centres to bind and activate weakly π-acidic species, such as N 2 , through backbonding interactions 5 – 7 , and incorporating analogous moieties into a porous material should give rise to a similar adsorption mechanism for these gaseous substrates 8 . Here, we report a metal–organic framework featuring exposed vanadium( ii ) centres capable of back-donating electron density to weak π acids to successfully target π acidity for separation applications. This adsorption mechanism, together with a high concentration of available adsorption sites, results in record N 2 capacities and selectivities for the removal of N 2 from mixtures with CH 4 , while further enabling olefin/paraffin separations at elevated temperatures. Ultimately, incorporating such π-basic metal centres into porous materials offers a handle for capturing and activating key molecular species within next-generation adsorbents. Nitrogenases use transition metals to selectively capture weak π acids such as N 2 by employing backbonding interactions. Here, a metal–organic framework with exposed vanadium sites is presented that uses this approach for selective capture of N 2 from CH 4 , with impressive selectivity and capacity.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-019-0597-8</identifier><identifier>PMID: 32015534</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/131 ; 140/146 ; 639/301/299/1013 ; 639/638/263 ; 639/638/298 ; 639/638/298/921 ; 639/638/911 ; Acidity ; Adsorbents ; Adsorption ; Biomaterials ; Chemistry and Materials Science ; Condensed Matter Physics ; Electron density ; Exposure ; High temperature ; Letter ; Materials Science ; Metal-organic frameworks ; Metals ; Methane ; Nanotechnology ; Optical and Electronic Materials ; Paraffins ; Porous materials ; Selectivity ; Transition metals ; Vanadium</subject><ispartof>Nature materials, 2020-05, Vol.19 (5), p.517-521</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-b1be43bf6f6fbcc1c9b8aed7613ee68ee97f53df35b9e0691ae94e8ac0512c1b3</citedby><cites>FETCH-LOGICAL-c507t-b1be43bf6f6fbcc1c9b8aed7613ee68ee97f53df35b9e0691ae94e8ac0512c1b3</cites><orcidid>0000-0002-6715-6443 ; 0000-0002-3695-2295 ; 0000-0002-5324-1321 ; 0000-0002-3068-4963 ; 0000-0002-2895-3327 ; 0000000230684963 ; 0000000253241321 ; 0000000267156443 ; 0000000228953327 ; 0000000236952295</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41563-019-0597-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41563-019-0597-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32015534$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1616600$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jaramillo, David E.</creatorcontrib><creatorcontrib>Reed, Douglas A.</creatorcontrib><creatorcontrib>Jiang, Henry Z. H.</creatorcontrib><creatorcontrib>Oktawiec, Julia</creatorcontrib><creatorcontrib>Mara, Michael W.</creatorcontrib><creatorcontrib>Forse, Alexander C.</creatorcontrib><creatorcontrib>Lussier, Daniel J.</creatorcontrib><creatorcontrib>Murphy, Ryan A.</creatorcontrib><creatorcontrib>Cunningham, Marc</creatorcontrib><creatorcontrib>Colombo, Valentina</creatorcontrib><creatorcontrib>Shuh, David K.</creatorcontrib><creatorcontrib>Reimer, Jeffrey A.</creatorcontrib><creatorcontrib>Long, Jeffrey R.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Selective nitrogen adsorption via backbonding in a metal–organic framework with exposed vanadium sites</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><addtitle>Nat Mater</addtitle><description>Industrial processes prominently feature π-acidic gases, and an adsorbent capable of selectively interacting with these molecules could enable important chemical separations 1 – 4 . Biological systems use accessible, reducing metal centres to bind and activate weakly π-acidic species, such as N 2 , through backbonding interactions 5 – 7 , and incorporating analogous moieties into a porous material should give rise to a similar adsorption mechanism for these gaseous substrates 8 . Here, we report a metal–organic framework featuring exposed vanadium( ii ) centres capable of back-donating electron density to weak π acids to successfully target π acidity for separation applications. This adsorption mechanism, together with a high concentration of available adsorption sites, results in record N 2 capacities and selectivities for the removal of N 2 from mixtures with CH 4 , while further enabling olefin/paraffin separations at elevated temperatures. Ultimately, incorporating such π-basic metal centres into porous materials offers a handle for capturing and activating key molecular species within next-generation adsorbents. Nitrogenases use transition metals to selectively capture weak π acids such as N 2 by employing backbonding interactions. Here, a metal–organic framework with exposed vanadium sites is presented that uses this approach for selective capture of N 2 from CH 4 , with impressive selectivity and capacity.</description><subject>140/131</subject><subject>140/146</subject><subject>639/301/299/1013</subject><subject>639/638/263</subject><subject>639/638/298</subject><subject>639/638/298/921</subject><subject>639/638/911</subject><subject>Acidity</subject><subject>Adsorbents</subject><subject>Adsorption</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electron density</subject><subject>Exposure</subject><subject>High temperature</subject><subject>Letter</subject><subject>Materials Science</subject><subject>Metal-organic frameworks</subject><subject>Metals</subject><subject>Methane</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Paraffins</subject><subject>Porous materials</subject><subject>Selectivity</subject><subject>Transition metals</subject><subject>Vanadium</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kc9u1DAQxiMEoqXwAFyQBRcuAf9PfERVW5AqcQDOlu1Mdt0m9mI7W7jxDrwhT4JXWUBCAs3BI81vvk_jr2meEvyKYNa_zpwIyVpMVIuF6tr-XnNKeCdbLiW-f-wJofSkeZTzDcaUCCEfNieM4toxftpsP8AErvg9oOBLihsIyAw5pl3xMaC9N8gad2tjGHzYIF-naIZiph_fvse0McE7NCYzw11Mt-jOly2CL7uYYUB7E8zglxllXyA_bh6MZsrw5PieNZ8uLz6ev22v31-9O39z3TqBu9JaYoEzO8pa1jnilO0NDJ0kDED2AKobBRtGJqwCLBUxoDj0xmFBqCOWnTXPV92Yi9fZVW-3dTGEeqUmktSfwRV6uUK7FD8vkIuefXYwTSZAXLKmTGCFeYf7ir74C72JSwr1BE15x5XCkrL_UkxxQelqS1bKpZhzglHvkp9N-qoJ1odE9ZqoronqQ6L64P_sqLzYGYbfG78irABdgVxHYQPpj_W_VX8CdZKtFA</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Jaramillo, David E.</creator><creator>Reed, Douglas A.</creator><creator>Jiang, Henry Z. H.</creator><creator>Oktawiec, Julia</creator><creator>Mara, Michael W.</creator><creator>Forse, Alexander C.</creator><creator>Lussier, Daniel J.</creator><creator>Murphy, Ryan A.</creator><creator>Cunningham, Marc</creator><creator>Colombo, Valentina</creator><creator>Shuh, David K.</creator><creator>Reimer, Jeffrey A.</creator><creator>Long, Jeffrey R.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Springer Nature - Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6715-6443</orcidid><orcidid>https://orcid.org/0000-0002-3695-2295</orcidid><orcidid>https://orcid.org/0000-0002-5324-1321</orcidid><orcidid>https://orcid.org/0000-0002-3068-4963</orcidid><orcidid>https://orcid.org/0000-0002-2895-3327</orcidid><orcidid>https://orcid.org/0000000230684963</orcidid><orcidid>https://orcid.org/0000000253241321</orcidid><orcidid>https://orcid.org/0000000267156443</orcidid><orcidid>https://orcid.org/0000000228953327</orcidid><orcidid>https://orcid.org/0000000236952295</orcidid></search><sort><creationdate>20200501</creationdate><title>Selective nitrogen adsorption via backbonding in a metal–organic framework with exposed vanadium sites</title><author>Jaramillo, David E. ; Reed, Douglas A. ; Jiang, Henry Z. H. ; Oktawiec, Julia ; Mara, Michael W. ; Forse, Alexander C. ; Lussier, Daniel J. ; Murphy, Ryan A. ; Cunningham, Marc ; Colombo, Valentina ; Shuh, David K. ; Reimer, Jeffrey A. ; Long, Jeffrey R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-b1be43bf6f6fbcc1c9b8aed7613ee68ee97f53df35b9e0691ae94e8ac0512c1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>140/131</topic><topic>140/146</topic><topic>639/301/299/1013</topic><topic>639/638/263</topic><topic>639/638/298</topic><topic>639/638/298/921</topic><topic>639/638/911</topic><topic>Acidity</topic><topic>Adsorbents</topic><topic>Adsorption</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electron density</topic><topic>Exposure</topic><topic>High temperature</topic><topic>Letter</topic><topic>Materials Science</topic><topic>Metal-organic frameworks</topic><topic>Metals</topic><topic>Methane</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Paraffins</topic><topic>Porous materials</topic><topic>Selectivity</topic><topic>Transition metals</topic><topic>Vanadium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jaramillo, David E.</creatorcontrib><creatorcontrib>Reed, Douglas A.</creatorcontrib><creatorcontrib>Jiang, Henry Z. H.</creatorcontrib><creatorcontrib>Oktawiec, Julia</creatorcontrib><creatorcontrib>Mara, Michael W.</creatorcontrib><creatorcontrib>Forse, Alexander C.</creatorcontrib><creatorcontrib>Lussier, Daniel J.</creatorcontrib><creatorcontrib>Murphy, Ryan A.</creatorcontrib><creatorcontrib>Cunningham, Marc</creatorcontrib><creatorcontrib>Colombo, Valentina</creatorcontrib><creatorcontrib>Shuh, David K.</creatorcontrib><creatorcontrib>Reimer, Jeffrey A.</creatorcontrib><creatorcontrib>Long, Jeffrey R.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jaramillo, David E.</au><au>Reed, Douglas A.</au><au>Jiang, Henry Z. H.</au><au>Oktawiec, Julia</au><au>Mara, Michael W.</au><au>Forse, Alexander C.</au><au>Lussier, Daniel J.</au><au>Murphy, Ryan A.</au><au>Cunningham, Marc</au><au>Colombo, Valentina</au><au>Shuh, David K.</au><au>Reimer, Jeffrey A.</au><au>Long, Jeffrey R.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective nitrogen adsorption via backbonding in a metal–organic framework with exposed vanadium sites</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><addtitle>Nat Mater</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>19</volume><issue>5</issue><spage>517</spage><epage>521</epage><pages>517-521</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Industrial processes prominently feature π-acidic gases, and an adsorbent capable of selectively interacting with these molecules could enable important chemical separations 1 – 4 . Biological systems use accessible, reducing metal centres to bind and activate weakly π-acidic species, such as N 2 , through backbonding interactions 5 – 7 , and incorporating analogous moieties into a porous material should give rise to a similar adsorption mechanism for these gaseous substrates 8 . Here, we report a metal–organic framework featuring exposed vanadium( ii ) centres capable of back-donating electron density to weak π acids to successfully target π acidity for separation applications. This adsorption mechanism, together with a high concentration of available adsorption sites, results in record N 2 capacities and selectivities for the removal of N 2 from mixtures with CH 4 , while further enabling olefin/paraffin separations at elevated temperatures. Ultimately, incorporating such π-basic metal centres into porous materials offers a handle for capturing and activating key molecular species within next-generation adsorbents. Nitrogenases use transition metals to selectively capture weak π acids such as N 2 by employing backbonding interactions. Here, a metal–organic framework with exposed vanadium sites is presented that uses this approach for selective capture of N 2 from CH 4 , with impressive selectivity and capacity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32015534</pmid><doi>10.1038/s41563-019-0597-8</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6715-6443</orcidid><orcidid>https://orcid.org/0000-0002-3695-2295</orcidid><orcidid>https://orcid.org/0000-0002-5324-1321</orcidid><orcidid>https://orcid.org/0000-0002-3068-4963</orcidid><orcidid>https://orcid.org/0000-0002-2895-3327</orcidid><orcidid>https://orcid.org/0000000230684963</orcidid><orcidid>https://orcid.org/0000000253241321</orcidid><orcidid>https://orcid.org/0000000267156443</orcidid><orcidid>https://orcid.org/0000000228953327</orcidid><orcidid>https://orcid.org/0000000236952295</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2020-05, Vol.19 (5), p.517-521
issn 1476-1122
1476-4660
language eng
recordid cdi_osti_scitechconnect_1616600
source Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 140/131
140/146
639/301/299/1013
639/638/263
639/638/298
639/638/298/921
639/638/911
Acidity
Adsorbents
Adsorption
Biomaterials
Chemistry and Materials Science
Condensed Matter Physics
Electron density
Exposure
High temperature
Letter
Materials Science
Metal-organic frameworks
Metals
Methane
Nanotechnology
Optical and Electronic Materials
Paraffins
Porous materials
Selectivity
Transition metals
Vanadium
title Selective nitrogen adsorption via backbonding in a metal–organic framework with exposed vanadium sites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A44%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20nitrogen%20adsorption%20via%20backbonding%20in%20a%20metal%E2%80%93organic%20framework%20with%20exposed%20vanadium%20sites&rft.jtitle=Nature%20materials&rft.au=Jaramillo,%20David%20E.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2020-05-01&rft.volume=19&rft.issue=5&rft.spage=517&rft.epage=521&rft.pages=517-521&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-019-0597-8&rft_dat=%3Cproquest_osti_%3E2350904708%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2394522600&rft_id=info:pmid/32015534&rfr_iscdi=true