UNRAVEL: A Robust Modular Velocity Dealiasing Technique for Doppler Radar

Unfold Radar Velocity (UNRAVEL) is an open-source modular Doppler velocity dealiasing algorithm for weather radars. UNRAVEL is an algorithm that does not need external reference velocity data, making it easily applicable. The proposed algorithm includes 11 core modules and 2 dealiasing strategies. U...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of atmospheric and oceanic technology 2020-05, Vol.37 (5), p.741-758
Hauptverfasser: Louf, Valentin, Protat, Alain, Jackson, Robert C., Collis, Scott M., Helmus, Jonathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Unfold Radar Velocity (UNRAVEL) is an open-source modular Doppler velocity dealiasing algorithm for weather radars. UNRAVEL is an algorithm that does not need external reference velocity data, making it easily applicable. The proposed algorithm includes 11 core modules and 2 dealiasing strategies. UNRAVEL is an iterative algorithm. The goal is to build the dealiasing results starting with the strictest possible continuity tests in azimuth and range and, after each step, relaxing the parameters to include more results from a progressively growing number of reference points. UNRAVEL also has modules that perform 3D continuity checks. Thanks to this modular design, the number of dealiasing strategies can be expanded in order to optimize the dealiasing results. While the first driver dealiases Doppler velocity from each tilt independently from one another, the second driver also performs a three-dimensional continuity check of the velocity using successive elevations. The proposed dealiasing algorithm is tested using severe weather data from an S-band Doppler radar that have been aliased to mimic aliased radial velocity patterns that would be observed by a C-band Doppler radar. Artificially aliasing S-band data permits creation of a reference to which the performance of various dealiasing techniques can be compared. Comparisons show that UNRAVEL consistently outperforms other established dealiasing algorithms for the test period selected in this work.
ISSN:0739-0572
1520-0426
DOI:10.1175/JTECH-D-19-0020.1