Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites
Maximizing the power conversion efficiency (PCE) of perovskite/silicon tandem solar cells that can exceed the Shockley-Queisser single-cell limit requires a high-performing, stable perovskite top cell with a wide bandgap. We developed a stable perovskite solar cell with a bandgap of ~1.7 electron vo...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2020-04, Vol.368 (6487), p.155-160 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 160 |
---|---|
container_issue | 6487 |
container_start_page | 155 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 368 |
creator | Kim, Daehan Jung, Hee Joon Park, Ik Jae Larson, Bryon W Dunfield, Sean P Xiao, Chuanxiao Kim, Jekyung Tong, Jinhui Boonmongkolras, Passarut Ji, Su Geun Zhang, Fei Pae, Seong Ryul Kim, Minkyu Kang, Seok Beom Dravid, Vinayak Berry, Joseph J Kim, Jin Young Zhu, Kai Kim, Dong Hoe Shin, Byungha |
description | Maximizing the power conversion efficiency (PCE) of perovskite/silicon tandem solar cells that can exceed the Shockley-Queisser single-cell limit requires a high-performing, stable perovskite top cell with a wide bandgap. We developed a stable perovskite solar cell with a bandgap of ~1.7 electron volts that retained more than 80% of its initial PCE of 20.7% after 1000 hours of continuous illumination. Anion engineering of phenethylammonium-based two-dimensional (2D) additives was critical for controlling the structural and electrical properties of the 2D passivation layers based on a lead iodide framework. The high PCE of 26.7% of a monolithic two-terminal wide-bandgap perovskite/silicon tandem solar cell was made possible by the ideal combination of spectral responses of the top and bottom cells. |
doi_str_mv | 10.1126/science.aba3433 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1615092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2383658504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-5bea69689935381b091d40bd65db2ad50043cce90b9199d3a36b90419189ac033</originalsourceid><addsrcrecordid>eNpdkc1vFDEMxSMEotuFMzc0gksPTOuMJ9nxsarKh1SJC5w4RPnwlpTZzDLJgvrfk9EuHDhZsn9-8vMT4pWESyk7fZV95OT50jqLPeITsZJAqqUO8KlYAaBuB9ioM3Ge8wNAnRE-F2fYdXKzUbgS326327iIlHdNLtaN3OQ4Rj-lptgUeNd4HsfccFpmoXGPjU1xSi2n-5iY59r7HQO3rtL3dt_seZ5-5R-xcH4hnm3tmPnlqa7F1_e3X24-tnefP3y6ub5rfa-otMqx1aQHIlQ4SAckQw8uaBVcZ4MC6NF7JnAkiQJa1I6glyQHsh4Q1-LNUXfKJZr6ksL-e3WQ2BcjtVRAXYUujtB-nn4eOBezi3nxZhNPh2w6HKok6Y2s6Nv_0IfpMKdqYaFQq0HVk9bi6kj5ecp55q3Zz3Fn50cjwSzhmFM45hRO3Xh90j24HYd__N808A9epot3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2383658504</pqid></control><display><type>article</type><title>Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites</title><source>American Association for the Advancement of Science</source><creator>Kim, Daehan ; Jung, Hee Joon ; Park, Ik Jae ; Larson, Bryon W ; Dunfield, Sean P ; Xiao, Chuanxiao ; Kim, Jekyung ; Tong, Jinhui ; Boonmongkolras, Passarut ; Ji, Su Geun ; Zhang, Fei ; Pae, Seong Ryul ; Kim, Minkyu ; Kang, Seok Beom ; Dravid, Vinayak ; Berry, Joseph J ; Kim, Jin Young ; Zhu, Kai ; Kim, Dong Hoe ; Shin, Byungha</creator><creatorcontrib>Kim, Daehan ; Jung, Hee Joon ; Park, Ik Jae ; Larson, Bryon W ; Dunfield, Sean P ; Xiao, Chuanxiao ; Kim, Jekyung ; Tong, Jinhui ; Boonmongkolras, Passarut ; Ji, Su Geun ; Zhang, Fei ; Pae, Seong Ryul ; Kim, Minkyu ; Kang, Seok Beom ; Dravid, Vinayak ; Berry, Joseph J ; Kim, Jin Young ; Zhu, Kai ; Kim, Dong Hoe ; Shin, Byungha</creatorcontrib><description>Maximizing the power conversion efficiency (PCE) of perovskite/silicon tandem solar cells that can exceed the Shockley-Queisser single-cell limit requires a high-performing, stable perovskite top cell with a wide bandgap. We developed a stable perovskite solar cell with a bandgap of ~1.7 electron volts that retained more than 80% of its initial PCE of 20.7% after 1000 hours of continuous illumination. Anion engineering of phenethylammonium-based two-dimensional (2D) additives was critical for controlling the structural and electrical properties of the 2D passivation layers based on a lead iodide framework. The high PCE of 26.7% of a monolithic two-terminal wide-bandgap perovskite/silicon tandem solar cell was made possible by the ideal combination of spectral responses of the top and bottom cells.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aba3433</identifier><identifier>PMID: 32217753</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Additives ; Anions ; Bromine ; Efficiency ; Electrical properties ; Illumination ; Iodides ; Iodine ; Perovskites ; Photovoltaic cells ; Silicon ; Solar cells</subject><ispartof>Science (American Association for the Advancement of Science), 2020-04, Vol.368 (6487), p.155-160</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-5bea69689935381b091d40bd65db2ad50043cce90b9199d3a36b90419189ac033</citedby><cites>FETCH-LOGICAL-c459t-5bea69689935381b091d40bd65db2ad50043cce90b9199d3a36b90419189ac033</cites><orcidid>0000-0002-0934-987X ; 0000-0002-6007-3063 ; 0000-0001-7963-0897 ; 0000-0002-8250-5736 ; 0000-0002-6401-9072 ; 0000-0001-7746-9972 ; 0000-0002-5081-7794 ; 0000-0001-8909-2076 ; 0000-0003-2359-1862 ; 0000-0003-0908-3909 ; 0000-0002-8960-1747 ; 0000-0002-3774-9520 ; 0000-0002-2855-4457 ; 0000-0001-6845-0305 ; 0000-0002-4362-4011 ; 0000-0003-3874-3582 ; 0000-0002-3377-6249 ; 0000000228554457 ; 0000000338743582 ; 0000000282505736 ; 0000000250817794 ; 0000000264019072 ; 0000000189092076 ; 0000000243624011 ; 0000000323591862 ; 0000000260073063 ; 0000000237749520 ; 0000000309083909 ; 0000000168450305 ; 000000020934987X ; 0000000289601747 ; 0000000177469972 ; 0000000233776249 ; 0000000179630897</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2884,2885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32217753$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1615092$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Daehan</creatorcontrib><creatorcontrib>Jung, Hee Joon</creatorcontrib><creatorcontrib>Park, Ik Jae</creatorcontrib><creatorcontrib>Larson, Bryon W</creatorcontrib><creatorcontrib>Dunfield, Sean P</creatorcontrib><creatorcontrib>Xiao, Chuanxiao</creatorcontrib><creatorcontrib>Kim, Jekyung</creatorcontrib><creatorcontrib>Tong, Jinhui</creatorcontrib><creatorcontrib>Boonmongkolras, Passarut</creatorcontrib><creatorcontrib>Ji, Su Geun</creatorcontrib><creatorcontrib>Zhang, Fei</creatorcontrib><creatorcontrib>Pae, Seong Ryul</creatorcontrib><creatorcontrib>Kim, Minkyu</creatorcontrib><creatorcontrib>Kang, Seok Beom</creatorcontrib><creatorcontrib>Dravid, Vinayak</creatorcontrib><creatorcontrib>Berry, Joseph J</creatorcontrib><creatorcontrib>Kim, Jin Young</creatorcontrib><creatorcontrib>Zhu, Kai</creatorcontrib><creatorcontrib>Kim, Dong Hoe</creatorcontrib><creatorcontrib>Shin, Byungha</creatorcontrib><title>Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Maximizing the power conversion efficiency (PCE) of perovskite/silicon tandem solar cells that can exceed the Shockley-Queisser single-cell limit requires a high-performing, stable perovskite top cell with a wide bandgap. We developed a stable perovskite solar cell with a bandgap of ~1.7 electron volts that retained more than 80% of its initial PCE of 20.7% after 1000 hours of continuous illumination. Anion engineering of phenethylammonium-based two-dimensional (2D) additives was critical for controlling the structural and electrical properties of the 2D passivation layers based on a lead iodide framework. The high PCE of 26.7% of a monolithic two-terminal wide-bandgap perovskite/silicon tandem solar cell was made possible by the ideal combination of spectral responses of the top and bottom cells.</description><subject>Additives</subject><subject>Anions</subject><subject>Bromine</subject><subject>Efficiency</subject><subject>Electrical properties</subject><subject>Illumination</subject><subject>Iodides</subject><subject>Iodine</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Silicon</subject><subject>Solar cells</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkc1vFDEMxSMEotuFMzc0gksPTOuMJ9nxsarKh1SJC5w4RPnwlpTZzDLJgvrfk9EuHDhZsn9-8vMT4pWESyk7fZV95OT50jqLPeITsZJAqqUO8KlYAaBuB9ioM3Ge8wNAnRE-F2fYdXKzUbgS326327iIlHdNLtaN3OQ4Rj-lptgUeNd4HsfccFpmoXGPjU1xSi2n-5iY59r7HQO3rtL3dt_seZ5-5R-xcH4hnm3tmPnlqa7F1_e3X24-tnefP3y6ub5rfa-otMqx1aQHIlQ4SAckQw8uaBVcZ4MC6NF7JnAkiQJa1I6glyQHsh4Q1-LNUXfKJZr6ksL-e3WQ2BcjtVRAXYUujtB-nn4eOBezi3nxZhNPh2w6HKok6Y2s6Nv_0IfpMKdqYaFQq0HVk9bi6kj5ecp55q3Zz3Fn50cjwSzhmFM45hRO3Xh90j24HYd__N808A9epot3</recordid><startdate>20200410</startdate><enddate>20200410</enddate><creator>Kim, Daehan</creator><creator>Jung, Hee Joon</creator><creator>Park, Ik Jae</creator><creator>Larson, Bryon W</creator><creator>Dunfield, Sean P</creator><creator>Xiao, Chuanxiao</creator><creator>Kim, Jekyung</creator><creator>Tong, Jinhui</creator><creator>Boonmongkolras, Passarut</creator><creator>Ji, Su Geun</creator><creator>Zhang, Fei</creator><creator>Pae, Seong Ryul</creator><creator>Kim, Minkyu</creator><creator>Kang, Seok Beom</creator><creator>Dravid, Vinayak</creator><creator>Berry, Joseph J</creator><creator>Kim, Jin Young</creator><creator>Zhu, Kai</creator><creator>Kim, Dong Hoe</creator><creator>Shin, Byungha</creator><general>The American Association for the Advancement of Science</general><general>American Association for the Advancement of Science (AAAS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0934-987X</orcidid><orcidid>https://orcid.org/0000-0002-6007-3063</orcidid><orcidid>https://orcid.org/0000-0001-7963-0897</orcidid><orcidid>https://orcid.org/0000-0002-8250-5736</orcidid><orcidid>https://orcid.org/0000-0002-6401-9072</orcidid><orcidid>https://orcid.org/0000-0001-7746-9972</orcidid><orcidid>https://orcid.org/0000-0002-5081-7794</orcidid><orcidid>https://orcid.org/0000-0001-8909-2076</orcidid><orcidid>https://orcid.org/0000-0003-2359-1862</orcidid><orcidid>https://orcid.org/0000-0003-0908-3909</orcidid><orcidid>https://orcid.org/0000-0002-8960-1747</orcidid><orcidid>https://orcid.org/0000-0002-3774-9520</orcidid><orcidid>https://orcid.org/0000-0002-2855-4457</orcidid><orcidid>https://orcid.org/0000-0001-6845-0305</orcidid><orcidid>https://orcid.org/0000-0002-4362-4011</orcidid><orcidid>https://orcid.org/0000-0003-3874-3582</orcidid><orcidid>https://orcid.org/0000-0002-3377-6249</orcidid><orcidid>https://orcid.org/0000000228554457</orcidid><orcidid>https://orcid.org/0000000338743582</orcidid><orcidid>https://orcid.org/0000000282505736</orcidid><orcidid>https://orcid.org/0000000250817794</orcidid><orcidid>https://orcid.org/0000000264019072</orcidid><orcidid>https://orcid.org/0000000189092076</orcidid><orcidid>https://orcid.org/0000000243624011</orcidid><orcidid>https://orcid.org/0000000323591862</orcidid><orcidid>https://orcid.org/0000000260073063</orcidid><orcidid>https://orcid.org/0000000237749520</orcidid><orcidid>https://orcid.org/0000000309083909</orcidid><orcidid>https://orcid.org/0000000168450305</orcidid><orcidid>https://orcid.org/000000020934987X</orcidid><orcidid>https://orcid.org/0000000289601747</orcidid><orcidid>https://orcid.org/0000000177469972</orcidid><orcidid>https://orcid.org/0000000233776249</orcidid><orcidid>https://orcid.org/0000000179630897</orcidid></search><sort><creationdate>20200410</creationdate><title>Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites</title><author>Kim, Daehan ; Jung, Hee Joon ; Park, Ik Jae ; Larson, Bryon W ; Dunfield, Sean P ; Xiao, Chuanxiao ; Kim, Jekyung ; Tong, Jinhui ; Boonmongkolras, Passarut ; Ji, Su Geun ; Zhang, Fei ; Pae, Seong Ryul ; Kim, Minkyu ; Kang, Seok Beom ; Dravid, Vinayak ; Berry, Joseph J ; Kim, Jin Young ; Zhu, Kai ; Kim, Dong Hoe ; Shin, Byungha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-5bea69689935381b091d40bd65db2ad50043cce90b9199d3a36b90419189ac033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Additives</topic><topic>Anions</topic><topic>Bromine</topic><topic>Efficiency</topic><topic>Electrical properties</topic><topic>Illumination</topic><topic>Iodides</topic><topic>Iodine</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Silicon</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Daehan</creatorcontrib><creatorcontrib>Jung, Hee Joon</creatorcontrib><creatorcontrib>Park, Ik Jae</creatorcontrib><creatorcontrib>Larson, Bryon W</creatorcontrib><creatorcontrib>Dunfield, Sean P</creatorcontrib><creatorcontrib>Xiao, Chuanxiao</creatorcontrib><creatorcontrib>Kim, Jekyung</creatorcontrib><creatorcontrib>Tong, Jinhui</creatorcontrib><creatorcontrib>Boonmongkolras, Passarut</creatorcontrib><creatorcontrib>Ji, Su Geun</creatorcontrib><creatorcontrib>Zhang, Fei</creatorcontrib><creatorcontrib>Pae, Seong Ryul</creatorcontrib><creatorcontrib>Kim, Minkyu</creatorcontrib><creatorcontrib>Kang, Seok Beom</creatorcontrib><creatorcontrib>Dravid, Vinayak</creatorcontrib><creatorcontrib>Berry, Joseph J</creatorcontrib><creatorcontrib>Kim, Jin Young</creatorcontrib><creatorcontrib>Zhu, Kai</creatorcontrib><creatorcontrib>Kim, Dong Hoe</creatorcontrib><creatorcontrib>Shin, Byungha</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Daehan</au><au>Jung, Hee Joon</au><au>Park, Ik Jae</au><au>Larson, Bryon W</au><au>Dunfield, Sean P</au><au>Xiao, Chuanxiao</au><au>Kim, Jekyung</au><au>Tong, Jinhui</au><au>Boonmongkolras, Passarut</au><au>Ji, Su Geun</au><au>Zhang, Fei</au><au>Pae, Seong Ryul</au><au>Kim, Minkyu</au><au>Kang, Seok Beom</au><au>Dravid, Vinayak</au><au>Berry, Joseph J</au><au>Kim, Jin Young</au><au>Zhu, Kai</au><au>Kim, Dong Hoe</au><au>Shin, Byungha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2020-04-10</date><risdate>2020</risdate><volume>368</volume><issue>6487</issue><spage>155</spage><epage>160</epage><pages>155-160</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Maximizing the power conversion efficiency (PCE) of perovskite/silicon tandem solar cells that can exceed the Shockley-Queisser single-cell limit requires a high-performing, stable perovskite top cell with a wide bandgap. We developed a stable perovskite solar cell with a bandgap of ~1.7 electron volts that retained more than 80% of its initial PCE of 20.7% after 1000 hours of continuous illumination. Anion engineering of phenethylammonium-based two-dimensional (2D) additives was critical for controlling the structural and electrical properties of the 2D passivation layers based on a lead iodide framework. The high PCE of 26.7% of a monolithic two-terminal wide-bandgap perovskite/silicon tandem solar cell was made possible by the ideal combination of spectral responses of the top and bottom cells.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>32217753</pmid><doi>10.1126/science.aba3433</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0934-987X</orcidid><orcidid>https://orcid.org/0000-0002-6007-3063</orcidid><orcidid>https://orcid.org/0000-0001-7963-0897</orcidid><orcidid>https://orcid.org/0000-0002-8250-5736</orcidid><orcidid>https://orcid.org/0000-0002-6401-9072</orcidid><orcidid>https://orcid.org/0000-0001-7746-9972</orcidid><orcidid>https://orcid.org/0000-0002-5081-7794</orcidid><orcidid>https://orcid.org/0000-0001-8909-2076</orcidid><orcidid>https://orcid.org/0000-0003-2359-1862</orcidid><orcidid>https://orcid.org/0000-0003-0908-3909</orcidid><orcidid>https://orcid.org/0000-0002-8960-1747</orcidid><orcidid>https://orcid.org/0000-0002-3774-9520</orcidid><orcidid>https://orcid.org/0000-0002-2855-4457</orcidid><orcidid>https://orcid.org/0000-0001-6845-0305</orcidid><orcidid>https://orcid.org/0000-0002-4362-4011</orcidid><orcidid>https://orcid.org/0000-0003-3874-3582</orcidid><orcidid>https://orcid.org/0000-0002-3377-6249</orcidid><orcidid>https://orcid.org/0000000228554457</orcidid><orcidid>https://orcid.org/0000000338743582</orcidid><orcidid>https://orcid.org/0000000282505736</orcidid><orcidid>https://orcid.org/0000000250817794</orcidid><orcidid>https://orcid.org/0000000264019072</orcidid><orcidid>https://orcid.org/0000000189092076</orcidid><orcidid>https://orcid.org/0000000243624011</orcidid><orcidid>https://orcid.org/0000000323591862</orcidid><orcidid>https://orcid.org/0000000260073063</orcidid><orcidid>https://orcid.org/0000000237749520</orcidid><orcidid>https://orcid.org/0000000309083909</orcidid><orcidid>https://orcid.org/0000000168450305</orcidid><orcidid>https://orcid.org/000000020934987X</orcidid><orcidid>https://orcid.org/0000000289601747</orcidid><orcidid>https://orcid.org/0000000177469972</orcidid><orcidid>https://orcid.org/0000000233776249</orcidid><orcidid>https://orcid.org/0000000179630897</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2020-04, Vol.368 (6487), p.155-160 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_osti_scitechconnect_1615092 |
source | American Association for the Advancement of Science |
subjects | Additives Anions Bromine Efficiency Electrical properties Illumination Iodides Iodine Perovskites Photovoltaic cells Silicon Solar cells |
title | Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T19%3A03%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient,%20stable%20silicon%20tandem%20cells%20enabled%20by%20anion-engineered%20wide-bandgap%20perovskites&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Kim,%20Daehan&rft.date=2020-04-10&rft.volume=368&rft.issue=6487&rft.spage=155&rft.epage=160&rft.pages=155-160&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aba3433&rft_dat=%3Cproquest_osti_%3E2383658504%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2383658504&rft_id=info:pmid/32217753&rfr_iscdi=true |