Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites

Maximizing the power conversion efficiency (PCE) of perovskite/silicon tandem solar cells that can exceed the Shockley-Queisser single-cell limit requires a high-performing, stable perovskite top cell with a wide bandgap. We developed a stable perovskite solar cell with a bandgap of ~1.7 electron vo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2020-04, Vol.368 (6487), p.155-160
Hauptverfasser: Kim, Daehan, Jung, Hee Joon, Park, Ik Jae, Larson, Bryon W, Dunfield, Sean P, Xiao, Chuanxiao, Kim, Jekyung, Tong, Jinhui, Boonmongkolras, Passarut, Ji, Su Geun, Zhang, Fei, Pae, Seong Ryul, Kim, Minkyu, Kang, Seok Beom, Dravid, Vinayak, Berry, Joseph J, Kim, Jin Young, Zhu, Kai, Kim, Dong Hoe, Shin, Byungha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 160
container_issue 6487
container_start_page 155
container_title Science (American Association for the Advancement of Science)
container_volume 368
creator Kim, Daehan
Jung, Hee Joon
Park, Ik Jae
Larson, Bryon W
Dunfield, Sean P
Xiao, Chuanxiao
Kim, Jekyung
Tong, Jinhui
Boonmongkolras, Passarut
Ji, Su Geun
Zhang, Fei
Pae, Seong Ryul
Kim, Minkyu
Kang, Seok Beom
Dravid, Vinayak
Berry, Joseph J
Kim, Jin Young
Zhu, Kai
Kim, Dong Hoe
Shin, Byungha
description Maximizing the power conversion efficiency (PCE) of perovskite/silicon tandem solar cells that can exceed the Shockley-Queisser single-cell limit requires a high-performing, stable perovskite top cell with a wide bandgap. We developed a stable perovskite solar cell with a bandgap of ~1.7 electron volts that retained more than 80% of its initial PCE of 20.7% after 1000 hours of continuous illumination. Anion engineering of phenethylammonium-based two-dimensional (2D) additives was critical for controlling the structural and electrical properties of the 2D passivation layers based on a lead iodide framework. The high PCE of 26.7% of a monolithic two-terminal wide-bandgap perovskite/silicon tandem solar cell was made possible by the ideal combination of spectral responses of the top and bottom cells.
doi_str_mv 10.1126/science.aba3433
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1615092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2383658504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-5bea69689935381b091d40bd65db2ad50043cce90b9199d3a36b90419189ac033</originalsourceid><addsrcrecordid>eNpdkc1vFDEMxSMEotuFMzc0gksPTOuMJ9nxsarKh1SJC5w4RPnwlpTZzDLJgvrfk9EuHDhZsn9-8vMT4pWESyk7fZV95OT50jqLPeITsZJAqqUO8KlYAaBuB9ioM3Ge8wNAnRE-F2fYdXKzUbgS326327iIlHdNLtaN3OQ4Rj-lptgUeNd4HsfccFpmoXGPjU1xSi2n-5iY59r7HQO3rtL3dt_seZ5-5R-xcH4hnm3tmPnlqa7F1_e3X24-tnefP3y6ub5rfa-otMqx1aQHIlQ4SAckQw8uaBVcZ4MC6NF7JnAkiQJa1I6glyQHsh4Q1-LNUXfKJZr6ksL-e3WQ2BcjtVRAXYUujtB-nn4eOBezi3nxZhNPh2w6HKok6Y2s6Nv_0IfpMKdqYaFQq0HVk9bi6kj5ecp55q3Zz3Fn50cjwSzhmFM45hRO3Xh90j24HYd__N808A9epot3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2383658504</pqid></control><display><type>article</type><title>Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites</title><source>American Association for the Advancement of Science</source><creator>Kim, Daehan ; Jung, Hee Joon ; Park, Ik Jae ; Larson, Bryon W ; Dunfield, Sean P ; Xiao, Chuanxiao ; Kim, Jekyung ; Tong, Jinhui ; Boonmongkolras, Passarut ; Ji, Su Geun ; Zhang, Fei ; Pae, Seong Ryul ; Kim, Minkyu ; Kang, Seok Beom ; Dravid, Vinayak ; Berry, Joseph J ; Kim, Jin Young ; Zhu, Kai ; Kim, Dong Hoe ; Shin, Byungha</creator><creatorcontrib>Kim, Daehan ; Jung, Hee Joon ; Park, Ik Jae ; Larson, Bryon W ; Dunfield, Sean P ; Xiao, Chuanxiao ; Kim, Jekyung ; Tong, Jinhui ; Boonmongkolras, Passarut ; Ji, Su Geun ; Zhang, Fei ; Pae, Seong Ryul ; Kim, Minkyu ; Kang, Seok Beom ; Dravid, Vinayak ; Berry, Joseph J ; Kim, Jin Young ; Zhu, Kai ; Kim, Dong Hoe ; Shin, Byungha</creatorcontrib><description>Maximizing the power conversion efficiency (PCE) of perovskite/silicon tandem solar cells that can exceed the Shockley-Queisser single-cell limit requires a high-performing, stable perovskite top cell with a wide bandgap. We developed a stable perovskite solar cell with a bandgap of ~1.7 electron volts that retained more than 80% of its initial PCE of 20.7% after 1000 hours of continuous illumination. Anion engineering of phenethylammonium-based two-dimensional (2D) additives was critical for controlling the structural and electrical properties of the 2D passivation layers based on a lead iodide framework. The high PCE of 26.7% of a monolithic two-terminal wide-bandgap perovskite/silicon tandem solar cell was made possible by the ideal combination of spectral responses of the top and bottom cells.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aba3433</identifier><identifier>PMID: 32217753</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Additives ; Anions ; Bromine ; Efficiency ; Electrical properties ; Illumination ; Iodides ; Iodine ; Perovskites ; Photovoltaic cells ; Silicon ; Solar cells</subject><ispartof>Science (American Association for the Advancement of Science), 2020-04, Vol.368 (6487), p.155-160</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-5bea69689935381b091d40bd65db2ad50043cce90b9199d3a36b90419189ac033</citedby><cites>FETCH-LOGICAL-c459t-5bea69689935381b091d40bd65db2ad50043cce90b9199d3a36b90419189ac033</cites><orcidid>0000-0002-0934-987X ; 0000-0002-6007-3063 ; 0000-0001-7963-0897 ; 0000-0002-8250-5736 ; 0000-0002-6401-9072 ; 0000-0001-7746-9972 ; 0000-0002-5081-7794 ; 0000-0001-8909-2076 ; 0000-0003-2359-1862 ; 0000-0003-0908-3909 ; 0000-0002-8960-1747 ; 0000-0002-3774-9520 ; 0000-0002-2855-4457 ; 0000-0001-6845-0305 ; 0000-0002-4362-4011 ; 0000-0003-3874-3582 ; 0000-0002-3377-6249 ; 0000000228554457 ; 0000000338743582 ; 0000000282505736 ; 0000000250817794 ; 0000000264019072 ; 0000000189092076 ; 0000000243624011 ; 0000000323591862 ; 0000000260073063 ; 0000000237749520 ; 0000000309083909 ; 0000000168450305 ; 000000020934987X ; 0000000289601747 ; 0000000177469972 ; 0000000233776249 ; 0000000179630897</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2884,2885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32217753$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1615092$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Daehan</creatorcontrib><creatorcontrib>Jung, Hee Joon</creatorcontrib><creatorcontrib>Park, Ik Jae</creatorcontrib><creatorcontrib>Larson, Bryon W</creatorcontrib><creatorcontrib>Dunfield, Sean P</creatorcontrib><creatorcontrib>Xiao, Chuanxiao</creatorcontrib><creatorcontrib>Kim, Jekyung</creatorcontrib><creatorcontrib>Tong, Jinhui</creatorcontrib><creatorcontrib>Boonmongkolras, Passarut</creatorcontrib><creatorcontrib>Ji, Su Geun</creatorcontrib><creatorcontrib>Zhang, Fei</creatorcontrib><creatorcontrib>Pae, Seong Ryul</creatorcontrib><creatorcontrib>Kim, Minkyu</creatorcontrib><creatorcontrib>Kang, Seok Beom</creatorcontrib><creatorcontrib>Dravid, Vinayak</creatorcontrib><creatorcontrib>Berry, Joseph J</creatorcontrib><creatorcontrib>Kim, Jin Young</creatorcontrib><creatorcontrib>Zhu, Kai</creatorcontrib><creatorcontrib>Kim, Dong Hoe</creatorcontrib><creatorcontrib>Shin, Byungha</creatorcontrib><title>Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Maximizing the power conversion efficiency (PCE) of perovskite/silicon tandem solar cells that can exceed the Shockley-Queisser single-cell limit requires a high-performing, stable perovskite top cell with a wide bandgap. We developed a stable perovskite solar cell with a bandgap of ~1.7 electron volts that retained more than 80% of its initial PCE of 20.7% after 1000 hours of continuous illumination. Anion engineering of phenethylammonium-based two-dimensional (2D) additives was critical for controlling the structural and electrical properties of the 2D passivation layers based on a lead iodide framework. The high PCE of 26.7% of a monolithic two-terminal wide-bandgap perovskite/silicon tandem solar cell was made possible by the ideal combination of spectral responses of the top and bottom cells.</description><subject>Additives</subject><subject>Anions</subject><subject>Bromine</subject><subject>Efficiency</subject><subject>Electrical properties</subject><subject>Illumination</subject><subject>Iodides</subject><subject>Iodine</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Silicon</subject><subject>Solar cells</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkc1vFDEMxSMEotuFMzc0gksPTOuMJ9nxsarKh1SJC5w4RPnwlpTZzDLJgvrfk9EuHDhZsn9-8vMT4pWESyk7fZV95OT50jqLPeITsZJAqqUO8KlYAaBuB9ioM3Ge8wNAnRE-F2fYdXKzUbgS326327iIlHdNLtaN3OQ4Rj-lptgUeNd4HsfccFpmoXGPjU1xSi2n-5iY59r7HQO3rtL3dt_seZ5-5R-xcH4hnm3tmPnlqa7F1_e3X24-tnefP3y6ub5rfa-otMqx1aQHIlQ4SAckQw8uaBVcZ4MC6NF7JnAkiQJa1I6glyQHsh4Q1-LNUXfKJZr6ksL-e3WQ2BcjtVRAXYUujtB-nn4eOBezi3nxZhNPh2w6HKok6Y2s6Nv_0IfpMKdqYaFQq0HVk9bi6kj5ecp55q3Zz3Fn50cjwSzhmFM45hRO3Xh90j24HYd__N808A9epot3</recordid><startdate>20200410</startdate><enddate>20200410</enddate><creator>Kim, Daehan</creator><creator>Jung, Hee Joon</creator><creator>Park, Ik Jae</creator><creator>Larson, Bryon W</creator><creator>Dunfield, Sean P</creator><creator>Xiao, Chuanxiao</creator><creator>Kim, Jekyung</creator><creator>Tong, Jinhui</creator><creator>Boonmongkolras, Passarut</creator><creator>Ji, Su Geun</creator><creator>Zhang, Fei</creator><creator>Pae, Seong Ryul</creator><creator>Kim, Minkyu</creator><creator>Kang, Seok Beom</creator><creator>Dravid, Vinayak</creator><creator>Berry, Joseph J</creator><creator>Kim, Jin Young</creator><creator>Zhu, Kai</creator><creator>Kim, Dong Hoe</creator><creator>Shin, Byungha</creator><general>The American Association for the Advancement of Science</general><general>American Association for the Advancement of Science (AAAS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0934-987X</orcidid><orcidid>https://orcid.org/0000-0002-6007-3063</orcidid><orcidid>https://orcid.org/0000-0001-7963-0897</orcidid><orcidid>https://orcid.org/0000-0002-8250-5736</orcidid><orcidid>https://orcid.org/0000-0002-6401-9072</orcidid><orcidid>https://orcid.org/0000-0001-7746-9972</orcidid><orcidid>https://orcid.org/0000-0002-5081-7794</orcidid><orcidid>https://orcid.org/0000-0001-8909-2076</orcidid><orcidid>https://orcid.org/0000-0003-2359-1862</orcidid><orcidid>https://orcid.org/0000-0003-0908-3909</orcidid><orcidid>https://orcid.org/0000-0002-8960-1747</orcidid><orcidid>https://orcid.org/0000-0002-3774-9520</orcidid><orcidid>https://orcid.org/0000-0002-2855-4457</orcidid><orcidid>https://orcid.org/0000-0001-6845-0305</orcidid><orcidid>https://orcid.org/0000-0002-4362-4011</orcidid><orcidid>https://orcid.org/0000-0003-3874-3582</orcidid><orcidid>https://orcid.org/0000-0002-3377-6249</orcidid><orcidid>https://orcid.org/0000000228554457</orcidid><orcidid>https://orcid.org/0000000338743582</orcidid><orcidid>https://orcid.org/0000000282505736</orcidid><orcidid>https://orcid.org/0000000250817794</orcidid><orcidid>https://orcid.org/0000000264019072</orcidid><orcidid>https://orcid.org/0000000189092076</orcidid><orcidid>https://orcid.org/0000000243624011</orcidid><orcidid>https://orcid.org/0000000323591862</orcidid><orcidid>https://orcid.org/0000000260073063</orcidid><orcidid>https://orcid.org/0000000237749520</orcidid><orcidid>https://orcid.org/0000000309083909</orcidid><orcidid>https://orcid.org/0000000168450305</orcidid><orcidid>https://orcid.org/000000020934987X</orcidid><orcidid>https://orcid.org/0000000289601747</orcidid><orcidid>https://orcid.org/0000000177469972</orcidid><orcidid>https://orcid.org/0000000233776249</orcidid><orcidid>https://orcid.org/0000000179630897</orcidid></search><sort><creationdate>20200410</creationdate><title>Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites</title><author>Kim, Daehan ; Jung, Hee Joon ; Park, Ik Jae ; Larson, Bryon W ; Dunfield, Sean P ; Xiao, Chuanxiao ; Kim, Jekyung ; Tong, Jinhui ; Boonmongkolras, Passarut ; Ji, Su Geun ; Zhang, Fei ; Pae, Seong Ryul ; Kim, Minkyu ; Kang, Seok Beom ; Dravid, Vinayak ; Berry, Joseph J ; Kim, Jin Young ; Zhu, Kai ; Kim, Dong Hoe ; Shin, Byungha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-5bea69689935381b091d40bd65db2ad50043cce90b9199d3a36b90419189ac033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Additives</topic><topic>Anions</topic><topic>Bromine</topic><topic>Efficiency</topic><topic>Electrical properties</topic><topic>Illumination</topic><topic>Iodides</topic><topic>Iodine</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Silicon</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Daehan</creatorcontrib><creatorcontrib>Jung, Hee Joon</creatorcontrib><creatorcontrib>Park, Ik Jae</creatorcontrib><creatorcontrib>Larson, Bryon W</creatorcontrib><creatorcontrib>Dunfield, Sean P</creatorcontrib><creatorcontrib>Xiao, Chuanxiao</creatorcontrib><creatorcontrib>Kim, Jekyung</creatorcontrib><creatorcontrib>Tong, Jinhui</creatorcontrib><creatorcontrib>Boonmongkolras, Passarut</creatorcontrib><creatorcontrib>Ji, Su Geun</creatorcontrib><creatorcontrib>Zhang, Fei</creatorcontrib><creatorcontrib>Pae, Seong Ryul</creatorcontrib><creatorcontrib>Kim, Minkyu</creatorcontrib><creatorcontrib>Kang, Seok Beom</creatorcontrib><creatorcontrib>Dravid, Vinayak</creatorcontrib><creatorcontrib>Berry, Joseph J</creatorcontrib><creatorcontrib>Kim, Jin Young</creatorcontrib><creatorcontrib>Zhu, Kai</creatorcontrib><creatorcontrib>Kim, Dong Hoe</creatorcontrib><creatorcontrib>Shin, Byungha</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Daehan</au><au>Jung, Hee Joon</au><au>Park, Ik Jae</au><au>Larson, Bryon W</au><au>Dunfield, Sean P</au><au>Xiao, Chuanxiao</au><au>Kim, Jekyung</au><au>Tong, Jinhui</au><au>Boonmongkolras, Passarut</au><au>Ji, Su Geun</au><au>Zhang, Fei</au><au>Pae, Seong Ryul</au><au>Kim, Minkyu</au><au>Kang, Seok Beom</au><au>Dravid, Vinayak</au><au>Berry, Joseph J</au><au>Kim, Jin Young</au><au>Zhu, Kai</au><au>Kim, Dong Hoe</au><au>Shin, Byungha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2020-04-10</date><risdate>2020</risdate><volume>368</volume><issue>6487</issue><spage>155</spage><epage>160</epage><pages>155-160</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Maximizing the power conversion efficiency (PCE) of perovskite/silicon tandem solar cells that can exceed the Shockley-Queisser single-cell limit requires a high-performing, stable perovskite top cell with a wide bandgap. We developed a stable perovskite solar cell with a bandgap of ~1.7 electron volts that retained more than 80% of its initial PCE of 20.7% after 1000 hours of continuous illumination. Anion engineering of phenethylammonium-based two-dimensional (2D) additives was critical for controlling the structural and electrical properties of the 2D passivation layers based on a lead iodide framework. The high PCE of 26.7% of a monolithic two-terminal wide-bandgap perovskite/silicon tandem solar cell was made possible by the ideal combination of spectral responses of the top and bottom cells.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>32217753</pmid><doi>10.1126/science.aba3433</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0934-987X</orcidid><orcidid>https://orcid.org/0000-0002-6007-3063</orcidid><orcidid>https://orcid.org/0000-0001-7963-0897</orcidid><orcidid>https://orcid.org/0000-0002-8250-5736</orcidid><orcidid>https://orcid.org/0000-0002-6401-9072</orcidid><orcidid>https://orcid.org/0000-0001-7746-9972</orcidid><orcidid>https://orcid.org/0000-0002-5081-7794</orcidid><orcidid>https://orcid.org/0000-0001-8909-2076</orcidid><orcidid>https://orcid.org/0000-0003-2359-1862</orcidid><orcidid>https://orcid.org/0000-0003-0908-3909</orcidid><orcidid>https://orcid.org/0000-0002-8960-1747</orcidid><orcidid>https://orcid.org/0000-0002-3774-9520</orcidid><orcidid>https://orcid.org/0000-0002-2855-4457</orcidid><orcidid>https://orcid.org/0000-0001-6845-0305</orcidid><orcidid>https://orcid.org/0000-0002-4362-4011</orcidid><orcidid>https://orcid.org/0000-0003-3874-3582</orcidid><orcidid>https://orcid.org/0000-0002-3377-6249</orcidid><orcidid>https://orcid.org/0000000228554457</orcidid><orcidid>https://orcid.org/0000000338743582</orcidid><orcidid>https://orcid.org/0000000282505736</orcidid><orcidid>https://orcid.org/0000000250817794</orcidid><orcidid>https://orcid.org/0000000264019072</orcidid><orcidid>https://orcid.org/0000000189092076</orcidid><orcidid>https://orcid.org/0000000243624011</orcidid><orcidid>https://orcid.org/0000000323591862</orcidid><orcidid>https://orcid.org/0000000260073063</orcidid><orcidid>https://orcid.org/0000000237749520</orcidid><orcidid>https://orcid.org/0000000309083909</orcidid><orcidid>https://orcid.org/0000000168450305</orcidid><orcidid>https://orcid.org/000000020934987X</orcidid><orcidid>https://orcid.org/0000000289601747</orcidid><orcidid>https://orcid.org/0000000177469972</orcidid><orcidid>https://orcid.org/0000000233776249</orcidid><orcidid>https://orcid.org/0000000179630897</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2020-04, Vol.368 (6487), p.155-160
issn 0036-8075
1095-9203
language eng
recordid cdi_osti_scitechconnect_1615092
source American Association for the Advancement of Science
subjects Additives
Anions
Bromine
Efficiency
Electrical properties
Illumination
Iodides
Iodine
Perovskites
Photovoltaic cells
Silicon
Solar cells
title Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T19%3A03%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient,%20stable%20silicon%20tandem%20cells%20enabled%20by%20anion-engineered%20wide-bandgap%20perovskites&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Kim,%20Daehan&rft.date=2020-04-10&rft.volume=368&rft.issue=6487&rft.spage=155&rft.epage=160&rft.pages=155-160&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aba3433&rft_dat=%3Cproquest_osti_%3E2383658504%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2383658504&rft_id=info:pmid/32217753&rfr_iscdi=true