Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites

Maximizing the power conversion efficiency (PCE) of perovskite/silicon tandem solar cells that can exceed the Shockley-Queisser single-cell limit requires a high-performing, stable perovskite top cell with a wide bandgap. We developed a stable perovskite solar cell with a bandgap of ~1.7 electron vo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2020-04, Vol.368 (6487), p.155-160
Hauptverfasser: Kim, Daehan, Jung, Hee Joon, Park, Ik Jae, Larson, Bryon W, Dunfield, Sean P, Xiao, Chuanxiao, Kim, Jekyung, Tong, Jinhui, Boonmongkolras, Passarut, Ji, Su Geun, Zhang, Fei, Pae, Seong Ryul, Kim, Minkyu, Kang, Seok Beom, Dravid, Vinayak, Berry, Joseph J, Kim, Jin Young, Zhu, Kai, Kim, Dong Hoe, Shin, Byungha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Maximizing the power conversion efficiency (PCE) of perovskite/silicon tandem solar cells that can exceed the Shockley-Queisser single-cell limit requires a high-performing, stable perovskite top cell with a wide bandgap. We developed a stable perovskite solar cell with a bandgap of ~1.7 electron volts that retained more than 80% of its initial PCE of 20.7% after 1000 hours of continuous illumination. Anion engineering of phenethylammonium-based two-dimensional (2D) additives was critical for controlling the structural and electrical properties of the 2D passivation layers based on a lead iodide framework. The high PCE of 26.7% of a monolithic two-terminal wide-bandgap perovskite/silicon tandem solar cell was made possible by the ideal combination of spectral responses of the top and bottom cells.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.aba3433