Comparison of Four Cell Topologies for 1.2-kV Accumulation- and Inversion-Channel 4H-SiC MOSFETs: Analysis and Experimental Results

The electrical characteristics of 1.2-kV-rated 4H-SiC accumulation (Acc) and inversion (Inv) channel MOSFETs with linear, square, hexagonal, and octagonal cell topologies fabricated using the same design rules and process flow in a 6-in foundry are compared for the first time. TCAD numerical simulat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2019-05, Vol.66 (5), p.2321-2326
Hauptverfasser: Han, Kijeong, Baliga, B. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2326
container_issue 5
container_start_page 2321
container_title IEEE transactions on electron devices
container_volume 66
creator Han, Kijeong
Baliga, B. J.
description The electrical characteristics of 1.2-kV-rated 4H-SiC accumulation (Acc) and inversion (Inv) channel MOSFETs with linear, square, hexagonal, and octagonal cell topologies fabricated using the same design rules and process flow in a 6-in foundry are compared for the first time. TCAD numerical simulations have been conducted to analyze the structures. For all the cell topologies, it was found that the Acc MOSFETs have lower specific ON-resistance ( {R}_{ \mathrm{\scriptscriptstyle ON},\textsf {sp}} ) than the Inv counterparts due to higher channel mobility resulting in 1.3- 2.0\times smaller high-frequency figure-of-merit (HF-FOM[ {R} _{ \mathrm{\scriptscriptstyle ON}} \times {Q}_{\textsf {gd}} ]), where {Q} _{\textsf {gd}} is the gate-to-drain charge. It is observed that the square and hexagonal cell topologies with the same structural dimensions show similar electrical performance. When compared with the standard linear cell topology: 1) the hexagonal cell topology has 1.15\times better specific ON-resistance and 1.12\times worse HF-FOM[ \text{R}_{ \mathrm{\scriptscriptstyle ON}} \times {Q}_{\textsf {gd}} ] and 2) the octagonal cell topology has 1.5\times worse specific ON-resistance and 1.4\times better HF-FOM[ \text{R}_{ \mathrm{\scriptscriptstyle ON}} \times {Q}_{\textsf {gd}} ]. In addition, the octagonal cell topology has a much superior figure-of-merit (FOM[ {C} _{\textsf {iss}}/{C} _{\textsf {rss}} ]), where {C} _{\textsf {iss}} is the input capacitance and {C} _{\textsf {gd}} is the reverse transfer capacitance.
doi_str_mv 10.1109/TED.2019.2905736
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_osti_scitechconnect_1613349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8676241</ieee_id><sourcerecordid>2214422868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-480065e41f87fa28c191823c685f7ea2ed8c6280000041b45f97d66b80fbc0f93</originalsourceid><addsrcrecordid>eNo9kc1PGzEQxa2qSE2Be6VeLDhv8Nd6vdyibfiQqJAg7dVyHLuYOuvFs4vKmX8ch6DOZTTS743mzUPoGyVzSkl7tlr-mDNC2zlrSd1w-QnNaF03VSuF_IxmhFBVtVzxL-grwGMZpRBshl67tB1MDpB6nDy-SFPGnYsRr9KQYvoTHGCfMqZzVv39jRfWTtspmjGkvsKm3-Dr_tll2I3dg-l7F7G4qu5Dh3_e3l8sV3COF72JLxDgHV_-G1wOW9ePJuI7B1Mc4QgdeBPBHX_0Q_SrKLur6ub28rpb3FSWSzJWQhEiayeoV403TFnaUsW4lar2jTPMbZSVrEClBF2L2rfNRsq1In5tiW_5ITrZ700wBg02jM4-2FSOtqOmknIudtDpHhpyepocjPqx_KRYAM0YLT9jSqpCkT1lcwLIzuuhuDL5RVOid3nokofe5aE_8iiS73tJcM79x5VsJBOUvwF6aoRU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2214422868</pqid></control><display><type>article</type><title>Comparison of Four Cell Topologies for 1.2-kV Accumulation- and Inversion-Channel 4H-SiC MOSFETs: Analysis and Experimental Results</title><source>IEEE Electronic Library (IEL)</source><creator>Han, Kijeong ; Baliga, B. J.</creator><creatorcontrib>Han, Kijeong ; Baliga, B. J. ; North Carolina State Univ., Raleigh, NC (United States)</creatorcontrib><description><![CDATA[The electrical characteristics of 1.2-kV-rated 4H-SiC accumulation (Acc) and inversion (Inv) channel MOSFETs with linear, square, hexagonal, and octagonal cell topologies fabricated using the same design rules and process flow in a 6-in foundry are compared for the first time. TCAD numerical simulations have been conducted to analyze the structures. For all the cell topologies, it was found that the Acc MOSFETs have lower specific ON-resistance (<inline-formula> <tex-math notation="LaTeX">{R}_{ \mathrm{\scriptscriptstyle ON},\textsf {sp}} </tex-math></inline-formula>) than the Inv counterparts due to higher channel mobility resulting in 1.3-<inline-formula> <tex-math notation="LaTeX">2.0\times </tex-math></inline-formula> smaller high-frequency figure-of-merit (HF-FOM[<inline-formula> <tex-math notation="LaTeX">{R} _{ \mathrm{\scriptscriptstyle ON}} \times {Q}_{\textsf {gd}} </tex-math></inline-formula>]), where <inline-formula> <tex-math notation="LaTeX">{Q} _{\textsf {gd}} </tex-math></inline-formula> is the gate-to-drain charge. It is observed that the square and hexagonal cell topologies with the same structural dimensions show similar electrical performance. When compared with the standard linear cell topology: 1) the hexagonal cell topology has <inline-formula> <tex-math notation="LaTeX">1.15\times </tex-math></inline-formula> better specific ON-resistance and <inline-formula> <tex-math notation="LaTeX">1.12\times </tex-math></inline-formula> worse HF-FOM[<inline-formula> <tex-math notation="LaTeX">\text{R}_{ \mathrm{\scriptscriptstyle ON}} \times {Q}_{\textsf {gd}} </tex-math></inline-formula>] and 2) the octagonal cell topology has <inline-formula> <tex-math notation="LaTeX">1.5\times </tex-math></inline-formula> worse specific ON-resistance and <inline-formula> <tex-math notation="LaTeX">1.4\times </tex-math></inline-formula> better HF-FOM[<inline-formula> <tex-math notation="LaTeX">\text{R}_{ \mathrm{\scriptscriptstyle ON}} \times {Q}_{\textsf {gd}} </tex-math></inline-formula>]. In addition, the octagonal cell topology has a much superior figure-of-merit (FOM[<inline-formula> <tex-math notation="LaTeX">{C} _{\textsf {iss}}/{C} _{\textsf {rss}} </tex-math></inline-formula>]), where <inline-formula> <tex-math notation="LaTeX">{C} _{\textsf {iss}} </tex-math></inline-formula> is the input capacitance and <inline-formula> <tex-math notation="LaTeX">{C} _{\textsf {gd}} </tex-math></inline-formula> is the reverse transfer capacitance.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2019.2905736</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>4H-SiC ; &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;C gd ; &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;C iss ; &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Q gd ; Accumulation ; Bars ; Capacitance ; cell ; Computer simulation ; Engineering ; hexagonal ; Hexagonal cells ; HF-FOMs ; JFETs ; linear ; Logic gates ; MOSFET ; MOSFETs ; Numerical simulation ; octagonal ; Physics ; Silicon carbide ; silicon carbide (SiC) ; square ; Topology</subject><ispartof>IEEE transactions on electron devices, 2019-05, Vol.66 (5), p.2321-2326</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-480065e41f87fa28c191823c685f7ea2ed8c6280000041b45f97d66b80fbc0f93</citedby><cites>FETCH-LOGICAL-c360t-480065e41f87fa28c191823c685f7ea2ed8c6280000041b45f97d66b80fbc0f93</cites><orcidid>0000-0002-1006-0694 ; 0000-0001-9171-0080 ; 0000000210060694 ; 0000000191710080</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8676241$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8676241$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/1613349$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Kijeong</creatorcontrib><creatorcontrib>Baliga, B. J.</creatorcontrib><creatorcontrib>North Carolina State Univ., Raleigh, NC (United States)</creatorcontrib><title>Comparison of Four Cell Topologies for 1.2-kV Accumulation- and Inversion-Channel 4H-SiC MOSFETs: Analysis and Experimental Results</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[The electrical characteristics of 1.2-kV-rated 4H-SiC accumulation (Acc) and inversion (Inv) channel MOSFETs with linear, square, hexagonal, and octagonal cell topologies fabricated using the same design rules and process flow in a 6-in foundry are compared for the first time. TCAD numerical simulations have been conducted to analyze the structures. For all the cell topologies, it was found that the Acc MOSFETs have lower specific ON-resistance (<inline-formula> <tex-math notation="LaTeX">{R}_{ \mathrm{\scriptscriptstyle ON},\textsf {sp}} </tex-math></inline-formula>) than the Inv counterparts due to higher channel mobility resulting in 1.3-<inline-formula> <tex-math notation="LaTeX">2.0\times </tex-math></inline-formula> smaller high-frequency figure-of-merit (HF-FOM[<inline-formula> <tex-math notation="LaTeX">{R} _{ \mathrm{\scriptscriptstyle ON}} \times {Q}_{\textsf {gd}} </tex-math></inline-formula>]), where <inline-formula> <tex-math notation="LaTeX">{Q} _{\textsf {gd}} </tex-math></inline-formula> is the gate-to-drain charge. It is observed that the square and hexagonal cell topologies with the same structural dimensions show similar electrical performance. When compared with the standard linear cell topology: 1) the hexagonal cell topology has <inline-formula> <tex-math notation="LaTeX">1.15\times </tex-math></inline-formula> better specific ON-resistance and <inline-formula> <tex-math notation="LaTeX">1.12\times </tex-math></inline-formula> worse HF-FOM[<inline-formula> <tex-math notation="LaTeX">\text{R}_{ \mathrm{\scriptscriptstyle ON}} \times {Q}_{\textsf {gd}} </tex-math></inline-formula>] and 2) the octagonal cell topology has <inline-formula> <tex-math notation="LaTeX">1.5\times </tex-math></inline-formula> worse specific ON-resistance and <inline-formula> <tex-math notation="LaTeX">1.4\times </tex-math></inline-formula> better HF-FOM[<inline-formula> <tex-math notation="LaTeX">\text{R}_{ \mathrm{\scriptscriptstyle ON}} \times {Q}_{\textsf {gd}} </tex-math></inline-formula>]. In addition, the octagonal cell topology has a much superior figure-of-merit (FOM[<inline-formula> <tex-math notation="LaTeX">{C} _{\textsf {iss}}/{C} _{\textsf {rss}} </tex-math></inline-formula>]), where <inline-formula> <tex-math notation="LaTeX">{C} _{\textsf {iss}} </tex-math></inline-formula> is the input capacitance and <inline-formula> <tex-math notation="LaTeX">{C} _{\textsf {gd}} </tex-math></inline-formula> is the reverse transfer capacitance.]]></description><subject>4H-SiC</subject><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;C gd</subject><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;C iss</subject><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Q gd</subject><subject>Accumulation</subject><subject>Bars</subject><subject>Capacitance</subject><subject>cell</subject><subject>Computer simulation</subject><subject>Engineering</subject><subject>hexagonal</subject><subject>Hexagonal cells</subject><subject>HF-FOMs</subject><subject>JFETs</subject><subject>linear</subject><subject>Logic gates</subject><subject>MOSFET</subject><subject>MOSFETs</subject><subject>Numerical simulation</subject><subject>octagonal</subject><subject>Physics</subject><subject>Silicon carbide</subject><subject>silicon carbide (SiC)</subject><subject>square</subject><subject>Topology</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kc1PGzEQxa2qSE2Be6VeLDhv8Nd6vdyibfiQqJAg7dVyHLuYOuvFs4vKmX8ch6DOZTTS743mzUPoGyVzSkl7tlr-mDNC2zlrSd1w-QnNaF03VSuF_IxmhFBVtVzxL-grwGMZpRBshl67tB1MDpB6nDy-SFPGnYsRr9KQYvoTHGCfMqZzVv39jRfWTtspmjGkvsKm3-Dr_tll2I3dg-l7F7G4qu5Dh3_e3l8sV3COF72JLxDgHV_-G1wOW9ePJuI7B1Mc4QgdeBPBHX_0Q_SrKLur6ub28rpb3FSWSzJWQhEiayeoV403TFnaUsW4lar2jTPMbZSVrEClBF2L2rfNRsq1In5tiW_5ITrZ700wBg02jM4-2FSOtqOmknIudtDpHhpyepocjPqx_KRYAM0YLT9jSqpCkT1lcwLIzuuhuDL5RVOid3nokofe5aE_8iiS73tJcM79x5VsJBOUvwF6aoRU</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Han, Kijeong</creator><creator>Baliga, B. J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1006-0694</orcidid><orcidid>https://orcid.org/0000-0001-9171-0080</orcidid><orcidid>https://orcid.org/0000000210060694</orcidid><orcidid>https://orcid.org/0000000191710080</orcidid></search><sort><creationdate>20190501</creationdate><title>Comparison of Four Cell Topologies for 1.2-kV Accumulation- and Inversion-Channel 4H-SiC MOSFETs: Analysis and Experimental Results</title><author>Han, Kijeong ; Baliga, B. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-480065e41f87fa28c191823c685f7ea2ed8c6280000041b45f97d66b80fbc0f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>4H-SiC</topic><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;C gd</topic><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;C iss</topic><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Q gd</topic><topic>Accumulation</topic><topic>Bars</topic><topic>Capacitance</topic><topic>cell</topic><topic>Computer simulation</topic><topic>Engineering</topic><topic>hexagonal</topic><topic>Hexagonal cells</topic><topic>HF-FOMs</topic><topic>JFETs</topic><topic>linear</topic><topic>Logic gates</topic><topic>MOSFET</topic><topic>MOSFETs</topic><topic>Numerical simulation</topic><topic>octagonal</topic><topic>Physics</topic><topic>Silicon carbide</topic><topic>silicon carbide (SiC)</topic><topic>square</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Kijeong</creatorcontrib><creatorcontrib>Baliga, B. J.</creatorcontrib><creatorcontrib>North Carolina State Univ., Raleigh, NC (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Han, Kijeong</au><au>Baliga, B. J.</au><aucorp>North Carolina State Univ., Raleigh, NC (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of Four Cell Topologies for 1.2-kV Accumulation- and Inversion-Channel 4H-SiC MOSFETs: Analysis and Experimental Results</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>66</volume><issue>5</issue><spage>2321</spage><epage>2326</epage><pages>2321-2326</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[The electrical characteristics of 1.2-kV-rated 4H-SiC accumulation (Acc) and inversion (Inv) channel MOSFETs with linear, square, hexagonal, and octagonal cell topologies fabricated using the same design rules and process flow in a 6-in foundry are compared for the first time. TCAD numerical simulations have been conducted to analyze the structures. For all the cell topologies, it was found that the Acc MOSFETs have lower specific ON-resistance (<inline-formula> <tex-math notation="LaTeX">{R}_{ \mathrm{\scriptscriptstyle ON},\textsf {sp}} </tex-math></inline-formula>) than the Inv counterparts due to higher channel mobility resulting in 1.3-<inline-formula> <tex-math notation="LaTeX">2.0\times </tex-math></inline-formula> smaller high-frequency figure-of-merit (HF-FOM[<inline-formula> <tex-math notation="LaTeX">{R} _{ \mathrm{\scriptscriptstyle ON}} \times {Q}_{\textsf {gd}} </tex-math></inline-formula>]), where <inline-formula> <tex-math notation="LaTeX">{Q} _{\textsf {gd}} </tex-math></inline-formula> is the gate-to-drain charge. It is observed that the square and hexagonal cell topologies with the same structural dimensions show similar electrical performance. When compared with the standard linear cell topology: 1) the hexagonal cell topology has <inline-formula> <tex-math notation="LaTeX">1.15\times </tex-math></inline-formula> better specific ON-resistance and <inline-formula> <tex-math notation="LaTeX">1.12\times </tex-math></inline-formula> worse HF-FOM[<inline-formula> <tex-math notation="LaTeX">\text{R}_{ \mathrm{\scriptscriptstyle ON}} \times {Q}_{\textsf {gd}} </tex-math></inline-formula>] and 2) the octagonal cell topology has <inline-formula> <tex-math notation="LaTeX">1.5\times </tex-math></inline-formula> worse specific ON-resistance and <inline-formula> <tex-math notation="LaTeX">1.4\times </tex-math></inline-formula> better HF-FOM[<inline-formula> <tex-math notation="LaTeX">\text{R}_{ \mathrm{\scriptscriptstyle ON}} \times {Q}_{\textsf {gd}} </tex-math></inline-formula>]. In addition, the octagonal cell topology has a much superior figure-of-merit (FOM[<inline-formula> <tex-math notation="LaTeX">{C} _{\textsf {iss}}/{C} _{\textsf {rss}} </tex-math></inline-formula>]), where <inline-formula> <tex-math notation="LaTeX">{C} _{\textsf {iss}} </tex-math></inline-formula> is the input capacitance and <inline-formula> <tex-math notation="LaTeX">{C} _{\textsf {gd}} </tex-math></inline-formula> is the reverse transfer capacitance.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2019.2905736</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1006-0694</orcidid><orcidid>https://orcid.org/0000-0001-9171-0080</orcidid><orcidid>https://orcid.org/0000000210060694</orcidid><orcidid>https://orcid.org/0000000191710080</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2019-05, Vol.66 (5), p.2321-2326
issn 0018-9383
1557-9646
language eng
recordid cdi_osti_scitechconnect_1613349
source IEEE Electronic Library (IEL)
subjects 4H-SiC
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">C gd
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">C iss
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Q gd
Accumulation
Bars
Capacitance
cell
Computer simulation
Engineering
hexagonal
Hexagonal cells
HF-FOMs
JFETs
linear
Logic gates
MOSFET
MOSFETs
Numerical simulation
octagonal
Physics
Silicon carbide
silicon carbide (SiC)
square
Topology
title Comparison of Four Cell Topologies for 1.2-kV Accumulation- and Inversion-Channel 4H-SiC MOSFETs: Analysis and Experimental Results
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A55%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20Four%20Cell%20Topologies%20for%201.2-kV%20Accumulation-%20and%20Inversion-Channel%204H-SiC%20MOSFETs:%20Analysis%20and%20Experimental%20Results&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Han,%20Kijeong&rft.aucorp=North%20Carolina%20State%20Univ.,%20Raleigh,%20NC%20(United%20States)&rft.date=2019-05-01&rft.volume=66&rft.issue=5&rft.spage=2321&rft.epage=2326&rft.pages=2321-2326&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2019.2905736&rft_dat=%3Cproquest_RIE%3E2214422868%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2214422868&rft_id=info:pmid/&rft_ieee_id=8676241&rfr_iscdi=true