Structure-preserving finite element methods for stationary MHD models
We develop a class of mixed finite element schemes for stationary magnetohydrodynamics (MHD) models, using the magnetic field \bm B and the current density \bm j as discretization variables. We show that Gauss's law for the magnetic field, namely \nabla \cdot \bm {B}=0, and the energy law for t...
Gespeichert in:
Veröffentlicht in: | Mathematics of computation 2018-05, Vol.88 (316), p.553-581 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We develop a class of mixed finite element schemes for stationary magnetohydrodynamics (MHD) models, using the magnetic field \bm B and the current density \bm j as discretization variables. We show that Gauss's law for the magnetic field, namely \nabla \cdot \bm {B}=0, and the energy law for the entire system are exactly preserved in the finite element schemes. Based on some new basic estimates for H(\mathrm {div}) finite elements, we show that the new finite element scheme is well-posed. Furthermore, we show the existence of solutions to the nonlinear problems and the convergence of the Picard iterations and the finite element methods under some conditions. |
---|---|
ISSN: | 0025-5718 1088-6842 |
DOI: | 10.1090/mcom/3341 |