Accurate Binding Energies for Lithium Polysulfides and Assessment of Density Functionals for Lithium–Sulfur Battery Research

Lithium–sulfur batteries have high theoretical energy density, but a better knowledge of their intimate structural details will be helpful in improving their conductivity and long-term cycling behavior. In order to identify the stationary configurations of lithium polysulfides (Li2S n , 2 ≤ n ≤ 8) f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2019-08, Vol.123 (34), p.20737-20747
Hauptverfasser: He, Qiu, Liao, Xiaobin, Xia, Lixue, Li, Zhaohuai, Wang, Huan, Zhao, Yan, Truhlar, Donald G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lithium–sulfur batteries have high theoretical energy density, but a better knowledge of their intimate structural details will be helpful in improving their conductivity and long-term cycling behavior. In order to identify the stationary configurations of lithium polysulfides (Li2S n , 2 ≤ n ≤ 8) formed in the charging and discharging processes of the lithium–sulfur batteries, ab initio molecular dynamics was employed to sample the configuration space of Li2S n , followed by optimization of structures by CCSD­(T)-F12b/aug-cc-pVDZ. Using the optimized stationary points, we have created the LiSAE38 benchmark database of atomization energies (AEs) of 38 lithium polysulfide isomers by using the higher-level WMS and W3X-L methods. In addition, the performances of 39 density functionals have been assessed against the benchmark AEs and the relative stabilities of Li2S n isomers. On the basis of the assessments with the def2-QZVP basis set, the PW6B95, B97-1, B3LYP-D3, TPSS, and DSD-PBEP86 density functionals are the most accurate for the AEs, whereas the mPW2-PLYP-D, DSD-PBEP86, PW6B95, HSE06, and PBEQIDH functionals are most accurate for the relative energies. Local functionals are of special interest because of their lower cost (faster timings in terms of computer resources) for large systems; among the tested local functionals, MN15-L and revM06-L are the most accurate for the calculations of relative stabilities.
ISSN:1932-7447
1932-7455
DOI:10.1021/acs.jpcc.9b05235