Blending Ionic and Coordinate Bonds in Hybrid Semiconductor Materials: A General Approach toward Robust and Solution-Processable Covalent/Coordinate Network Structures
Inorganic semiconductor materials are best known for their superior physical properties, as well as their structural rigidity and stability. However, the poor solubility and solution-processability of these covalently bonded network structures has long been a serious drawback that limits their use i...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2020-03, Vol.142 (9), p.4242-4253 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Inorganic semiconductor materials are best known for their superior physical properties, as well as their structural rigidity and stability. However, the poor solubility and solution-processability of these covalently bonded network structures has long been a serious drawback that limits their use in many important applications. Here, we present a unique and general approach to synthesize robust, solution-processable, and highly luminescent hybrid materials built on periodic and infinite inorganic modules. Structure analysis confirms that all compounds are composed of one-dimensional anionic chains of copper iodide (Cu m I m+2 2–) coordinated to cationic organic ligands via Cu–N bonds. The choice of ligands plays an important role in the coordination mode (μ1-MC or μ2-DC) and Cu–N bond strength. Greatly suppressed nonradiative decay is achieved for the μ2-DC structures. Record high quantum yields of 85% (λex = 360 nm) and 76% (λex = 450 nm) are obtained for an orange-emitting 1D-Cu4I6(L 6). Temperature dependent PL measurements suggest that both phosphorescence and thermally activated delayed fluorescence contribute to the emission of these 1D-AIO compounds, and that the extent of nonradiative decay of the μ2-DC structures is much less than that of the μ1-DC structures. More significantly, all compounds are remarkably soluble in polar aprotic solvents, distinctly different from previously reported CuI based hybrid materials made of charge-neutral Cu m X m (X = Cl, Br, I), which are totally insoluble in all common solvents. The greatly enhanced solubility is a result of incorporation of ionic bonds into extended covalent/coordinate network structures, making it possible to fabricate large scale thin films by solution processes. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.9b13772 |