Achieving 280 Gbar hot spot pressure in DT-layered CH capsule implosions at the National Ignition Facility

We are reporting on a series of indirect-drive 0.9-scale CH capsule implosions (inner radius = 840 μm) fielded in low gas-fill (0.6 mg/cm3) hohlraums of 6.72 mm diameter at the National Ignition Facility. Thanks to the 11%-reduction of the capsule size at a given hohlraum diameter compared to previo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2020-04, Vol.27 (4)
Hauptverfasser: Döppner, T., Hinkel, D. E., Jarrott, L. C., Masse, L., Ralph, J. E., Benedetti, L. R., Bachmann, B., Celliers, P. M., Casey, D. T., Divol, L., Field, J. E., Goyon, C., Hatarik, R., Hohenberger, M., Izumi, N., Khan, S. F., Kritcher, A. L., Ma, T., MacGowan, B. J., Millot, M., Milovich, J., Nagel, S., Pak, A., Park, J., Patel, P., Tommasini, R., Volegov, P., Weber, C., Landen, O. L., Callahan, D. A., Hurricane, O. A., Edwards, M. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Physics of plasmas
container_volume 27
creator Döppner, T.
Hinkel, D. E.
Jarrott, L. C.
Masse, L.
Ralph, J. E.
Benedetti, L. R.
Bachmann, B.
Celliers, P. M.
Casey, D. T.
Divol, L.
Field, J. E.
Goyon, C.
Hatarik, R.
Hohenberger, M.
Izumi, N.
Khan, S. F.
Kritcher, A. L.
Ma, T.
MacGowan, B. J.
Millot, M.
Milovich, J.
Nagel, S.
Pak, A.
Park, J.
Patel, P.
Tommasini, R.
Volegov, P.
Weber, C.
Landen, O. L.
Callahan, D. A.
Hurricane, O. A.
Edwards, M. J.
description We are reporting on a series of indirect-drive 0.9-scale CH capsule implosions (inner radius = 840 μm) fielded in low gas-fill (0.6 mg/cm3) hohlraums of 6.72 mm diameter at the National Ignition Facility. Thanks to the 11%-reduction of the capsule size at a given hohlraum diameter compared to previously tested full-scale capsules, we achieved good hot spot symmetry control near 33% cone-fraction and without the need to invoke cross beam energy transfer. As a result, we achieved a hot spot pressure of 280 ± 40 Gbar, which is the highest pressure demonstrated in layered DT implosions with CH capsules to date. Pushing this design to higher velocity resulted in a reduction of neutron yield. Highly resolved capsule simulations suggest that higher Au M-shell preheat resulted in an increase in Atwood number at the ablator–ice interface, which leads to increased fuel-ablator instability and mixing. The results reported here provide important scaling information for next-generation CH designs.
doi_str_mv 10.1063/1.5135921
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1607945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2385056829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-2b0f5d65573f6b1d27ea77b9b5562664f07ca414aed3d9f70ec3ac0d5e51d62b3</originalsourceid><addsrcrecordid>eNp90E1PwyAYB_DGaOKcHvwGRE-adEJboD0u070ki15m4o1QSleWrlSgS_btpXbRg4kXeAi_PA_8g-AWwQmCJH5CE4xinEXoLBghmGYhJTQ572sKQ0KSj8vgytodhDAhOB0Fu6molDyoZguiFIJFzg2otAO29UtrpLWdkUA14HkT1vwojSzAbAkEb21X-4t9W2urdGMBd8BVErxy54-8Bqtto_oSzLlQtXLH6-Ci5LWVN6d9HLzPXzazZbh-W6xm03Uo4jRzYZTDEhcEYxqXJEdFRCWnNM9yjEnkf1BCKniCEi6LuMhKCqWIuYAFlhgVJMrjcXA39NXWKWaFclJUQjeNFI4hAmmWYI_uB9Qa_dlJ69hOd8a_27IoTjHEJI0yrx4GJYy21siStUbtuTkyBFmfN0PslLe3j4PtJ36H8IMP2vxC1hblf_hv5y_bxY1f</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2385056829</pqid></control><display><type>article</type><title>Achieving 280 Gbar hot spot pressure in DT-layered CH capsule implosions at the National Ignition Facility</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Döppner, T. ; Hinkel, D. E. ; Jarrott, L. C. ; Masse, L. ; Ralph, J. E. ; Benedetti, L. R. ; Bachmann, B. ; Celliers, P. M. ; Casey, D. T. ; Divol, L. ; Field, J. E. ; Goyon, C. ; Hatarik, R. ; Hohenberger, M. ; Izumi, N. ; Khan, S. F. ; Kritcher, A. L. ; Ma, T. ; MacGowan, B. J. ; Millot, M. ; Milovich, J. ; Nagel, S. ; Pak, A. ; Park, J. ; Patel, P. ; Tommasini, R. ; Volegov, P. ; Weber, C. ; Landen, O. L. ; Callahan, D. A. ; Hurricane, O. A. ; Edwards, M. J.</creator><creatorcontrib>Döppner, T. ; Hinkel, D. E. ; Jarrott, L. C. ; Masse, L. ; Ralph, J. E. ; Benedetti, L. R. ; Bachmann, B. ; Celliers, P. M. ; Casey, D. T. ; Divol, L. ; Field, J. E. ; Goyon, C. ; Hatarik, R. ; Hohenberger, M. ; Izumi, N. ; Khan, S. F. ; Kritcher, A. L. ; Ma, T. ; MacGowan, B. J. ; Millot, M. ; Milovich, J. ; Nagel, S. ; Pak, A. ; Park, J. ; Patel, P. ; Tommasini, R. ; Volegov, P. ; Weber, C. ; Landen, O. L. ; Callahan, D. A. ; Hurricane, O. A. ; Edwards, M. J.</creatorcontrib><description>We are reporting on a series of indirect-drive 0.9-scale CH capsule implosions (inner radius = 840 μm) fielded in low gas-fill (0.6 mg/cm3) hohlraums of 6.72 mm diameter at the National Ignition Facility. Thanks to the 11%-reduction of the capsule size at a given hohlraum diameter compared to previously tested full-scale capsules, we achieved good hot spot symmetry control near 33% cone-fraction and without the need to invoke cross beam energy transfer. As a result, we achieved a hot spot pressure of 280 ± 40 Gbar, which is the highest pressure demonstrated in layered DT implosions with CH capsules to date. Pushing this design to higher velocity resulted in a reduction of neutron yield. Highly resolved capsule simulations suggest that higher Au M-shell preheat resulted in an increase in Atwood number at the ablator–ice interface, which leads to increased fuel-ablator instability and mixing. The results reported here provide important scaling information for next-generation CH designs.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.5135921</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Ablation ; Diameters ; Energy transfer ; Hohlraums ; Ignition ; Implosions ; Interface stability ; Plasma physics ; Reduction</subject><ispartof>Physics of plasmas, 2020-04, Vol.27 (4)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-2b0f5d65573f6b1d27ea77b9b5562664f07ca414aed3d9f70ec3ac0d5e51d62b3</citedby><cites>FETCH-LOGICAL-c389t-2b0f5d65573f6b1d27ea77b9b5562664f07ca414aed3d9f70ec3ac0d5e51d62b3</cites><orcidid>0000-0003-3894-662X ; 0000-0003-1114-597X ; 0000-0002-1499-8217 ; 0000-0003-0361-7500 ; 0000-0003-1233-1694 ; 0000-0002-1070-3565 ; 0000-0001-7992-0018 ; 0000-0002-5703-7125 ; 0000-0002-6657-9604 ; 0000-0002-3587-9671 ; 0000-0003-4414-3532 ; 0000-0002-8600-5448 ; 0000-0003-3786-0912 ; 0000-0002-7768-6819 ; 0000-0001-6050-2983 ; 0000-0001-7600-1227 ; 0000-0001-8848-0851 ; 0000-0003-0898-9178 ; 0000-0002-5887-9711 ; 0000000176001227 ; 0000000235879671 ; 0000000179920018 ; 0000000188480851 ; 0000000286005448 ; 0000000303617500 ; 0000000344143532 ; 0000000214998217 ; 0000000308989178 ; 0000000266579604 ; 000000031114597X ; 000000033894662X ; 0000000277686819 ; 0000000210703565 ; 0000000257037125 ; 0000000312331694 ; 0000000337860912 ; 0000000160502983 ; 0000000258879711</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.5135921$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76127</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1607945$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Döppner, T.</creatorcontrib><creatorcontrib>Hinkel, D. E.</creatorcontrib><creatorcontrib>Jarrott, L. C.</creatorcontrib><creatorcontrib>Masse, L.</creatorcontrib><creatorcontrib>Ralph, J. E.</creatorcontrib><creatorcontrib>Benedetti, L. R.</creatorcontrib><creatorcontrib>Bachmann, B.</creatorcontrib><creatorcontrib>Celliers, P. M.</creatorcontrib><creatorcontrib>Casey, D. T.</creatorcontrib><creatorcontrib>Divol, L.</creatorcontrib><creatorcontrib>Field, J. E.</creatorcontrib><creatorcontrib>Goyon, C.</creatorcontrib><creatorcontrib>Hatarik, R.</creatorcontrib><creatorcontrib>Hohenberger, M.</creatorcontrib><creatorcontrib>Izumi, N.</creatorcontrib><creatorcontrib>Khan, S. F.</creatorcontrib><creatorcontrib>Kritcher, A. L.</creatorcontrib><creatorcontrib>Ma, T.</creatorcontrib><creatorcontrib>MacGowan, B. J.</creatorcontrib><creatorcontrib>Millot, M.</creatorcontrib><creatorcontrib>Milovich, J.</creatorcontrib><creatorcontrib>Nagel, S.</creatorcontrib><creatorcontrib>Pak, A.</creatorcontrib><creatorcontrib>Park, J.</creatorcontrib><creatorcontrib>Patel, P.</creatorcontrib><creatorcontrib>Tommasini, R.</creatorcontrib><creatorcontrib>Volegov, P.</creatorcontrib><creatorcontrib>Weber, C.</creatorcontrib><creatorcontrib>Landen, O. L.</creatorcontrib><creatorcontrib>Callahan, D. A.</creatorcontrib><creatorcontrib>Hurricane, O. A.</creatorcontrib><creatorcontrib>Edwards, M. J.</creatorcontrib><title>Achieving 280 Gbar hot spot pressure in DT-layered CH capsule implosions at the National Ignition Facility</title><title>Physics of plasmas</title><description>We are reporting on a series of indirect-drive 0.9-scale CH capsule implosions (inner radius = 840 μm) fielded in low gas-fill (0.6 mg/cm3) hohlraums of 6.72 mm diameter at the National Ignition Facility. Thanks to the 11%-reduction of the capsule size at a given hohlraum diameter compared to previously tested full-scale capsules, we achieved good hot spot symmetry control near 33% cone-fraction and without the need to invoke cross beam energy transfer. As a result, we achieved a hot spot pressure of 280 ± 40 Gbar, which is the highest pressure demonstrated in layered DT implosions with CH capsules to date. Pushing this design to higher velocity resulted in a reduction of neutron yield. Highly resolved capsule simulations suggest that higher Au M-shell preheat resulted in an increase in Atwood number at the ablator–ice interface, which leads to increased fuel-ablator instability and mixing. The results reported here provide important scaling information for next-generation CH designs.</description><subject>Ablation</subject><subject>Diameters</subject><subject>Energy transfer</subject><subject>Hohlraums</subject><subject>Ignition</subject><subject>Implosions</subject><subject>Interface stability</subject><subject>Plasma physics</subject><subject>Reduction</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90E1PwyAYB_DGaOKcHvwGRE-adEJboD0u070ki15m4o1QSleWrlSgS_btpXbRg4kXeAi_PA_8g-AWwQmCJH5CE4xinEXoLBghmGYhJTQ572sKQ0KSj8vgytodhDAhOB0Fu6molDyoZguiFIJFzg2otAO29UtrpLWdkUA14HkT1vwojSzAbAkEb21X-4t9W2urdGMBd8BVErxy54-8Bqtto_oSzLlQtXLH6-Ci5LWVN6d9HLzPXzazZbh-W6xm03Uo4jRzYZTDEhcEYxqXJEdFRCWnNM9yjEnkf1BCKniCEi6LuMhKCqWIuYAFlhgVJMrjcXA39NXWKWaFclJUQjeNFI4hAmmWYI_uB9Qa_dlJ69hOd8a_27IoTjHEJI0yrx4GJYy21siStUbtuTkyBFmfN0PslLe3j4PtJ36H8IMP2vxC1hblf_hv5y_bxY1f</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Döppner, T.</creator><creator>Hinkel, D. E.</creator><creator>Jarrott, L. C.</creator><creator>Masse, L.</creator><creator>Ralph, J. E.</creator><creator>Benedetti, L. R.</creator><creator>Bachmann, B.</creator><creator>Celliers, P. M.</creator><creator>Casey, D. T.</creator><creator>Divol, L.</creator><creator>Field, J. E.</creator><creator>Goyon, C.</creator><creator>Hatarik, R.</creator><creator>Hohenberger, M.</creator><creator>Izumi, N.</creator><creator>Khan, S. F.</creator><creator>Kritcher, A. L.</creator><creator>Ma, T.</creator><creator>MacGowan, B. J.</creator><creator>Millot, M.</creator><creator>Milovich, J.</creator><creator>Nagel, S.</creator><creator>Pak, A.</creator><creator>Park, J.</creator><creator>Patel, P.</creator><creator>Tommasini, R.</creator><creator>Volegov, P.</creator><creator>Weber, C.</creator><creator>Landen, O. L.</creator><creator>Callahan, D. A.</creator><creator>Hurricane, O. A.</creator><creator>Edwards, M. J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3894-662X</orcidid><orcidid>https://orcid.org/0000-0003-1114-597X</orcidid><orcidid>https://orcid.org/0000-0002-1499-8217</orcidid><orcidid>https://orcid.org/0000-0003-0361-7500</orcidid><orcidid>https://orcid.org/0000-0003-1233-1694</orcidid><orcidid>https://orcid.org/0000-0002-1070-3565</orcidid><orcidid>https://orcid.org/0000-0001-7992-0018</orcidid><orcidid>https://orcid.org/0000-0002-5703-7125</orcidid><orcidid>https://orcid.org/0000-0002-6657-9604</orcidid><orcidid>https://orcid.org/0000-0002-3587-9671</orcidid><orcidid>https://orcid.org/0000-0003-4414-3532</orcidid><orcidid>https://orcid.org/0000-0002-8600-5448</orcidid><orcidid>https://orcid.org/0000-0003-3786-0912</orcidid><orcidid>https://orcid.org/0000-0002-7768-6819</orcidid><orcidid>https://orcid.org/0000-0001-6050-2983</orcidid><orcidid>https://orcid.org/0000-0001-7600-1227</orcidid><orcidid>https://orcid.org/0000-0001-8848-0851</orcidid><orcidid>https://orcid.org/0000-0003-0898-9178</orcidid><orcidid>https://orcid.org/0000-0002-5887-9711</orcidid><orcidid>https://orcid.org/0000000176001227</orcidid><orcidid>https://orcid.org/0000000235879671</orcidid><orcidid>https://orcid.org/0000000179920018</orcidid><orcidid>https://orcid.org/0000000188480851</orcidid><orcidid>https://orcid.org/0000000286005448</orcidid><orcidid>https://orcid.org/0000000303617500</orcidid><orcidid>https://orcid.org/0000000344143532</orcidid><orcidid>https://orcid.org/0000000214998217</orcidid><orcidid>https://orcid.org/0000000308989178</orcidid><orcidid>https://orcid.org/0000000266579604</orcidid><orcidid>https://orcid.org/000000031114597X</orcidid><orcidid>https://orcid.org/000000033894662X</orcidid><orcidid>https://orcid.org/0000000277686819</orcidid><orcidid>https://orcid.org/0000000210703565</orcidid><orcidid>https://orcid.org/0000000257037125</orcidid><orcidid>https://orcid.org/0000000312331694</orcidid><orcidid>https://orcid.org/0000000337860912</orcidid><orcidid>https://orcid.org/0000000160502983</orcidid><orcidid>https://orcid.org/0000000258879711</orcidid></search><sort><creationdate>202004</creationdate><title>Achieving 280 Gbar hot spot pressure in DT-layered CH capsule implosions at the National Ignition Facility</title><author>Döppner, T. ; Hinkel, D. E. ; Jarrott, L. C. ; Masse, L. ; Ralph, J. E. ; Benedetti, L. R. ; Bachmann, B. ; Celliers, P. M. ; Casey, D. T. ; Divol, L. ; Field, J. E. ; Goyon, C. ; Hatarik, R. ; Hohenberger, M. ; Izumi, N. ; Khan, S. F. ; Kritcher, A. L. ; Ma, T. ; MacGowan, B. J. ; Millot, M. ; Milovich, J. ; Nagel, S. ; Pak, A. ; Park, J. ; Patel, P. ; Tommasini, R. ; Volegov, P. ; Weber, C. ; Landen, O. L. ; Callahan, D. A. ; Hurricane, O. A. ; Edwards, M. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-2b0f5d65573f6b1d27ea77b9b5562664f07ca414aed3d9f70ec3ac0d5e51d62b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ablation</topic><topic>Diameters</topic><topic>Energy transfer</topic><topic>Hohlraums</topic><topic>Ignition</topic><topic>Implosions</topic><topic>Interface stability</topic><topic>Plasma physics</topic><topic>Reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Döppner, T.</creatorcontrib><creatorcontrib>Hinkel, D. E.</creatorcontrib><creatorcontrib>Jarrott, L. C.</creatorcontrib><creatorcontrib>Masse, L.</creatorcontrib><creatorcontrib>Ralph, J. E.</creatorcontrib><creatorcontrib>Benedetti, L. R.</creatorcontrib><creatorcontrib>Bachmann, B.</creatorcontrib><creatorcontrib>Celliers, P. M.</creatorcontrib><creatorcontrib>Casey, D. T.</creatorcontrib><creatorcontrib>Divol, L.</creatorcontrib><creatorcontrib>Field, J. E.</creatorcontrib><creatorcontrib>Goyon, C.</creatorcontrib><creatorcontrib>Hatarik, R.</creatorcontrib><creatorcontrib>Hohenberger, M.</creatorcontrib><creatorcontrib>Izumi, N.</creatorcontrib><creatorcontrib>Khan, S. F.</creatorcontrib><creatorcontrib>Kritcher, A. L.</creatorcontrib><creatorcontrib>Ma, T.</creatorcontrib><creatorcontrib>MacGowan, B. J.</creatorcontrib><creatorcontrib>Millot, M.</creatorcontrib><creatorcontrib>Milovich, J.</creatorcontrib><creatorcontrib>Nagel, S.</creatorcontrib><creatorcontrib>Pak, A.</creatorcontrib><creatorcontrib>Park, J.</creatorcontrib><creatorcontrib>Patel, P.</creatorcontrib><creatorcontrib>Tommasini, R.</creatorcontrib><creatorcontrib>Volegov, P.</creatorcontrib><creatorcontrib>Weber, C.</creatorcontrib><creatorcontrib>Landen, O. L.</creatorcontrib><creatorcontrib>Callahan, D. A.</creatorcontrib><creatorcontrib>Hurricane, O. A.</creatorcontrib><creatorcontrib>Edwards, M. J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Döppner, T.</au><au>Hinkel, D. E.</au><au>Jarrott, L. C.</au><au>Masse, L.</au><au>Ralph, J. E.</au><au>Benedetti, L. R.</au><au>Bachmann, B.</au><au>Celliers, P. M.</au><au>Casey, D. T.</au><au>Divol, L.</au><au>Field, J. E.</au><au>Goyon, C.</au><au>Hatarik, R.</au><au>Hohenberger, M.</au><au>Izumi, N.</au><au>Khan, S. F.</au><au>Kritcher, A. L.</au><au>Ma, T.</au><au>MacGowan, B. J.</au><au>Millot, M.</au><au>Milovich, J.</au><au>Nagel, S.</au><au>Pak, A.</au><au>Park, J.</au><au>Patel, P.</au><au>Tommasini, R.</au><au>Volegov, P.</au><au>Weber, C.</au><au>Landen, O. L.</au><au>Callahan, D. A.</au><au>Hurricane, O. A.</au><au>Edwards, M. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Achieving 280 Gbar hot spot pressure in DT-layered CH capsule implosions at the National Ignition Facility</atitle><jtitle>Physics of plasmas</jtitle><date>2020-04</date><risdate>2020</risdate><volume>27</volume><issue>4</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>We are reporting on a series of indirect-drive 0.9-scale CH capsule implosions (inner radius = 840 μm) fielded in low gas-fill (0.6 mg/cm3) hohlraums of 6.72 mm diameter at the National Ignition Facility. Thanks to the 11%-reduction of the capsule size at a given hohlraum diameter compared to previously tested full-scale capsules, we achieved good hot spot symmetry control near 33% cone-fraction and without the need to invoke cross beam energy transfer. As a result, we achieved a hot spot pressure of 280 ± 40 Gbar, which is the highest pressure demonstrated in layered DT implosions with CH capsules to date. Pushing this design to higher velocity resulted in a reduction of neutron yield. Highly resolved capsule simulations suggest that higher Au M-shell preheat resulted in an increase in Atwood number at the ablator–ice interface, which leads to increased fuel-ablator instability and mixing. The results reported here provide important scaling information for next-generation CH designs.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5135921</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-3894-662X</orcidid><orcidid>https://orcid.org/0000-0003-1114-597X</orcidid><orcidid>https://orcid.org/0000-0002-1499-8217</orcidid><orcidid>https://orcid.org/0000-0003-0361-7500</orcidid><orcidid>https://orcid.org/0000-0003-1233-1694</orcidid><orcidid>https://orcid.org/0000-0002-1070-3565</orcidid><orcidid>https://orcid.org/0000-0001-7992-0018</orcidid><orcidid>https://orcid.org/0000-0002-5703-7125</orcidid><orcidid>https://orcid.org/0000-0002-6657-9604</orcidid><orcidid>https://orcid.org/0000-0002-3587-9671</orcidid><orcidid>https://orcid.org/0000-0003-4414-3532</orcidid><orcidid>https://orcid.org/0000-0002-8600-5448</orcidid><orcidid>https://orcid.org/0000-0003-3786-0912</orcidid><orcidid>https://orcid.org/0000-0002-7768-6819</orcidid><orcidid>https://orcid.org/0000-0001-6050-2983</orcidid><orcidid>https://orcid.org/0000-0001-7600-1227</orcidid><orcidid>https://orcid.org/0000-0001-8848-0851</orcidid><orcidid>https://orcid.org/0000-0003-0898-9178</orcidid><orcidid>https://orcid.org/0000-0002-5887-9711</orcidid><orcidid>https://orcid.org/0000000176001227</orcidid><orcidid>https://orcid.org/0000000235879671</orcidid><orcidid>https://orcid.org/0000000179920018</orcidid><orcidid>https://orcid.org/0000000188480851</orcidid><orcidid>https://orcid.org/0000000286005448</orcidid><orcidid>https://orcid.org/0000000303617500</orcidid><orcidid>https://orcid.org/0000000344143532</orcidid><orcidid>https://orcid.org/0000000214998217</orcidid><orcidid>https://orcid.org/0000000308989178</orcidid><orcidid>https://orcid.org/0000000266579604</orcidid><orcidid>https://orcid.org/000000031114597X</orcidid><orcidid>https://orcid.org/000000033894662X</orcidid><orcidid>https://orcid.org/0000000277686819</orcidid><orcidid>https://orcid.org/0000000210703565</orcidid><orcidid>https://orcid.org/0000000257037125</orcidid><orcidid>https://orcid.org/0000000312331694</orcidid><orcidid>https://orcid.org/0000000337860912</orcidid><orcidid>https://orcid.org/0000000160502983</orcidid><orcidid>https://orcid.org/0000000258879711</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2020-04, Vol.27 (4)
issn 1070-664X
1089-7674
language eng
recordid cdi_osti_scitechconnect_1607945
source AIP Journals Complete; Alma/SFX Local Collection
subjects Ablation
Diameters
Energy transfer
Hohlraums
Ignition
Implosions
Interface stability
Plasma physics
Reduction
title Achieving 280 Gbar hot spot pressure in DT-layered CH capsule implosions at the National Ignition Facility
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A29%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Achieving%20280%20Gbar%20hot%20spot%20pressure%20in%20DT-layered%20CH%20capsule%20implosions%20at%20the%20National%20Ignition%20Facility&rft.jtitle=Physics%20of%20plasmas&rft.au=D%C3%B6ppner,%20T.&rft.date=2020-04&rft.volume=27&rft.issue=4&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.5135921&rft_dat=%3Cproquest_osti_%3E2385056829%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2385056829&rft_id=info:pmid/&rfr_iscdi=true