Achieving 280 Gbar hot spot pressure in DT-layered CH capsule implosions at the National Ignition Facility
We are reporting on a series of indirect-drive 0.9-scale CH capsule implosions (inner radius = 840 μm) fielded in low gas-fill (0.6 mg/cm3) hohlraums of 6.72 mm diameter at the National Ignition Facility. Thanks to the 11%-reduction of the capsule size at a given hohlraum diameter compared to previo...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2020-04, Vol.27 (4) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 27 |
creator | Döppner, T. Hinkel, D. E. Jarrott, L. C. Masse, L. Ralph, J. E. Benedetti, L. R. Bachmann, B. Celliers, P. M. Casey, D. T. Divol, L. Field, J. E. Goyon, C. Hatarik, R. Hohenberger, M. Izumi, N. Khan, S. F. Kritcher, A. L. Ma, T. MacGowan, B. J. Millot, M. Milovich, J. Nagel, S. Pak, A. Park, J. Patel, P. Tommasini, R. Volegov, P. Weber, C. Landen, O. L. Callahan, D. A. Hurricane, O. A. Edwards, M. J. |
description | We are reporting on a series of indirect-drive 0.9-scale CH capsule implosions (inner radius = 840 μm) fielded in low gas-fill (0.6 mg/cm3) hohlraums of 6.72 mm diameter at the National Ignition Facility. Thanks to the 11%-reduction of the capsule size at a given hohlraum diameter compared to previously tested full-scale capsules, we achieved good hot spot symmetry control near 33% cone-fraction and without the need to invoke cross beam energy transfer. As a result, we achieved a hot spot pressure of 280 ± 40 Gbar, which is the highest pressure demonstrated in layered DT implosions with CH capsules to date. Pushing this design to higher velocity resulted in a reduction of neutron yield. Highly resolved capsule simulations suggest that higher Au M-shell preheat resulted in an increase in Atwood number at the ablator–ice interface, which leads to increased fuel-ablator instability and mixing. The results reported here provide important scaling information for next-generation CH designs. |
doi_str_mv | 10.1063/1.5135921 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1607945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2385056829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-2b0f5d65573f6b1d27ea77b9b5562664f07ca414aed3d9f70ec3ac0d5e51d62b3</originalsourceid><addsrcrecordid>eNp90E1PwyAYB_DGaOKcHvwGRE-adEJboD0u070ki15m4o1QSleWrlSgS_btpXbRg4kXeAi_PA_8g-AWwQmCJH5CE4xinEXoLBghmGYhJTQ572sKQ0KSj8vgytodhDAhOB0Fu6molDyoZguiFIJFzg2otAO29UtrpLWdkUA14HkT1vwojSzAbAkEb21X-4t9W2urdGMBd8BVErxy54-8Bqtto_oSzLlQtXLH6-Ci5LWVN6d9HLzPXzazZbh-W6xm03Uo4jRzYZTDEhcEYxqXJEdFRCWnNM9yjEnkf1BCKniCEi6LuMhKCqWIuYAFlhgVJMrjcXA39NXWKWaFclJUQjeNFI4hAmmWYI_uB9Qa_dlJ69hOd8a_27IoTjHEJI0yrx4GJYy21siStUbtuTkyBFmfN0PslLe3j4PtJ36H8IMP2vxC1hblf_hv5y_bxY1f</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2385056829</pqid></control><display><type>article</type><title>Achieving 280 Gbar hot spot pressure in DT-layered CH capsule implosions at the National Ignition Facility</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Döppner, T. ; Hinkel, D. E. ; Jarrott, L. C. ; Masse, L. ; Ralph, J. E. ; Benedetti, L. R. ; Bachmann, B. ; Celliers, P. M. ; Casey, D. T. ; Divol, L. ; Field, J. E. ; Goyon, C. ; Hatarik, R. ; Hohenberger, M. ; Izumi, N. ; Khan, S. F. ; Kritcher, A. L. ; Ma, T. ; MacGowan, B. J. ; Millot, M. ; Milovich, J. ; Nagel, S. ; Pak, A. ; Park, J. ; Patel, P. ; Tommasini, R. ; Volegov, P. ; Weber, C. ; Landen, O. L. ; Callahan, D. A. ; Hurricane, O. A. ; Edwards, M. J.</creator><creatorcontrib>Döppner, T. ; Hinkel, D. E. ; Jarrott, L. C. ; Masse, L. ; Ralph, J. E. ; Benedetti, L. R. ; Bachmann, B. ; Celliers, P. M. ; Casey, D. T. ; Divol, L. ; Field, J. E. ; Goyon, C. ; Hatarik, R. ; Hohenberger, M. ; Izumi, N. ; Khan, S. F. ; Kritcher, A. L. ; Ma, T. ; MacGowan, B. J. ; Millot, M. ; Milovich, J. ; Nagel, S. ; Pak, A. ; Park, J. ; Patel, P. ; Tommasini, R. ; Volegov, P. ; Weber, C. ; Landen, O. L. ; Callahan, D. A. ; Hurricane, O. A. ; Edwards, M. J.</creatorcontrib><description>We are reporting on a series of indirect-drive 0.9-scale CH capsule implosions (inner radius = 840 μm) fielded in low gas-fill (0.6 mg/cm3) hohlraums of 6.72 mm diameter at the National Ignition Facility. Thanks to the 11%-reduction of the capsule size at a given hohlraum diameter compared to previously tested full-scale capsules, we achieved good hot spot symmetry control near 33% cone-fraction and without the need to invoke cross beam energy transfer. As a result, we achieved a hot spot pressure of 280 ± 40 Gbar, which is the highest pressure demonstrated in layered DT implosions with CH capsules to date. Pushing this design to higher velocity resulted in a reduction of neutron yield. Highly resolved capsule simulations suggest that higher Au M-shell preheat resulted in an increase in Atwood number at the ablator–ice interface, which leads to increased fuel-ablator instability and mixing. The results reported here provide important scaling information for next-generation CH designs.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.5135921</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Ablation ; Diameters ; Energy transfer ; Hohlraums ; Ignition ; Implosions ; Interface stability ; Plasma physics ; Reduction</subject><ispartof>Physics of plasmas, 2020-04, Vol.27 (4)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-2b0f5d65573f6b1d27ea77b9b5562664f07ca414aed3d9f70ec3ac0d5e51d62b3</citedby><cites>FETCH-LOGICAL-c389t-2b0f5d65573f6b1d27ea77b9b5562664f07ca414aed3d9f70ec3ac0d5e51d62b3</cites><orcidid>0000-0003-3894-662X ; 0000-0003-1114-597X ; 0000-0002-1499-8217 ; 0000-0003-0361-7500 ; 0000-0003-1233-1694 ; 0000-0002-1070-3565 ; 0000-0001-7992-0018 ; 0000-0002-5703-7125 ; 0000-0002-6657-9604 ; 0000-0002-3587-9671 ; 0000-0003-4414-3532 ; 0000-0002-8600-5448 ; 0000-0003-3786-0912 ; 0000-0002-7768-6819 ; 0000-0001-6050-2983 ; 0000-0001-7600-1227 ; 0000-0001-8848-0851 ; 0000-0003-0898-9178 ; 0000-0002-5887-9711 ; 0000000176001227 ; 0000000235879671 ; 0000000179920018 ; 0000000188480851 ; 0000000286005448 ; 0000000303617500 ; 0000000344143532 ; 0000000214998217 ; 0000000308989178 ; 0000000266579604 ; 000000031114597X ; 000000033894662X ; 0000000277686819 ; 0000000210703565 ; 0000000257037125 ; 0000000312331694 ; 0000000337860912 ; 0000000160502983 ; 0000000258879711</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.5135921$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76127</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1607945$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Döppner, T.</creatorcontrib><creatorcontrib>Hinkel, D. E.</creatorcontrib><creatorcontrib>Jarrott, L. C.</creatorcontrib><creatorcontrib>Masse, L.</creatorcontrib><creatorcontrib>Ralph, J. E.</creatorcontrib><creatorcontrib>Benedetti, L. R.</creatorcontrib><creatorcontrib>Bachmann, B.</creatorcontrib><creatorcontrib>Celliers, P. M.</creatorcontrib><creatorcontrib>Casey, D. T.</creatorcontrib><creatorcontrib>Divol, L.</creatorcontrib><creatorcontrib>Field, J. E.</creatorcontrib><creatorcontrib>Goyon, C.</creatorcontrib><creatorcontrib>Hatarik, R.</creatorcontrib><creatorcontrib>Hohenberger, M.</creatorcontrib><creatorcontrib>Izumi, N.</creatorcontrib><creatorcontrib>Khan, S. F.</creatorcontrib><creatorcontrib>Kritcher, A. L.</creatorcontrib><creatorcontrib>Ma, T.</creatorcontrib><creatorcontrib>MacGowan, B. J.</creatorcontrib><creatorcontrib>Millot, M.</creatorcontrib><creatorcontrib>Milovich, J.</creatorcontrib><creatorcontrib>Nagel, S.</creatorcontrib><creatorcontrib>Pak, A.</creatorcontrib><creatorcontrib>Park, J.</creatorcontrib><creatorcontrib>Patel, P.</creatorcontrib><creatorcontrib>Tommasini, R.</creatorcontrib><creatorcontrib>Volegov, P.</creatorcontrib><creatorcontrib>Weber, C.</creatorcontrib><creatorcontrib>Landen, O. L.</creatorcontrib><creatorcontrib>Callahan, D. A.</creatorcontrib><creatorcontrib>Hurricane, O. A.</creatorcontrib><creatorcontrib>Edwards, M. J.</creatorcontrib><title>Achieving 280 Gbar hot spot pressure in DT-layered CH capsule implosions at the National Ignition Facility</title><title>Physics of plasmas</title><description>We are reporting on a series of indirect-drive 0.9-scale CH capsule implosions (inner radius = 840 μm) fielded in low gas-fill (0.6 mg/cm3) hohlraums of 6.72 mm diameter at the National Ignition Facility. Thanks to the 11%-reduction of the capsule size at a given hohlraum diameter compared to previously tested full-scale capsules, we achieved good hot spot symmetry control near 33% cone-fraction and without the need to invoke cross beam energy transfer. As a result, we achieved a hot spot pressure of 280 ± 40 Gbar, which is the highest pressure demonstrated in layered DT implosions with CH capsules to date. Pushing this design to higher velocity resulted in a reduction of neutron yield. Highly resolved capsule simulations suggest that higher Au M-shell preheat resulted in an increase in Atwood number at the ablator–ice interface, which leads to increased fuel-ablator instability and mixing. The results reported here provide important scaling information for next-generation CH designs.</description><subject>Ablation</subject><subject>Diameters</subject><subject>Energy transfer</subject><subject>Hohlraums</subject><subject>Ignition</subject><subject>Implosions</subject><subject>Interface stability</subject><subject>Plasma physics</subject><subject>Reduction</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90E1PwyAYB_DGaOKcHvwGRE-adEJboD0u070ki15m4o1QSleWrlSgS_btpXbRg4kXeAi_PA_8g-AWwQmCJH5CE4xinEXoLBghmGYhJTQ572sKQ0KSj8vgytodhDAhOB0Fu6molDyoZguiFIJFzg2otAO29UtrpLWdkUA14HkT1vwojSzAbAkEb21X-4t9W2urdGMBd8BVErxy54-8Bqtto_oSzLlQtXLH6-Ci5LWVN6d9HLzPXzazZbh-W6xm03Uo4jRzYZTDEhcEYxqXJEdFRCWnNM9yjEnkf1BCKniCEi6LuMhKCqWIuYAFlhgVJMrjcXA39NXWKWaFclJUQjeNFI4hAmmWYI_uB9Qa_dlJ69hOd8a_27IoTjHEJI0yrx4GJYy21siStUbtuTkyBFmfN0PslLe3j4PtJ36H8IMP2vxC1hblf_hv5y_bxY1f</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Döppner, T.</creator><creator>Hinkel, D. E.</creator><creator>Jarrott, L. C.</creator><creator>Masse, L.</creator><creator>Ralph, J. E.</creator><creator>Benedetti, L. R.</creator><creator>Bachmann, B.</creator><creator>Celliers, P. M.</creator><creator>Casey, D. T.</creator><creator>Divol, L.</creator><creator>Field, J. E.</creator><creator>Goyon, C.</creator><creator>Hatarik, R.</creator><creator>Hohenberger, M.</creator><creator>Izumi, N.</creator><creator>Khan, S. F.</creator><creator>Kritcher, A. L.</creator><creator>Ma, T.</creator><creator>MacGowan, B. J.</creator><creator>Millot, M.</creator><creator>Milovich, J.</creator><creator>Nagel, S.</creator><creator>Pak, A.</creator><creator>Park, J.</creator><creator>Patel, P.</creator><creator>Tommasini, R.</creator><creator>Volegov, P.</creator><creator>Weber, C.</creator><creator>Landen, O. L.</creator><creator>Callahan, D. A.</creator><creator>Hurricane, O. A.</creator><creator>Edwards, M. J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3894-662X</orcidid><orcidid>https://orcid.org/0000-0003-1114-597X</orcidid><orcidid>https://orcid.org/0000-0002-1499-8217</orcidid><orcidid>https://orcid.org/0000-0003-0361-7500</orcidid><orcidid>https://orcid.org/0000-0003-1233-1694</orcidid><orcidid>https://orcid.org/0000-0002-1070-3565</orcidid><orcidid>https://orcid.org/0000-0001-7992-0018</orcidid><orcidid>https://orcid.org/0000-0002-5703-7125</orcidid><orcidid>https://orcid.org/0000-0002-6657-9604</orcidid><orcidid>https://orcid.org/0000-0002-3587-9671</orcidid><orcidid>https://orcid.org/0000-0003-4414-3532</orcidid><orcidid>https://orcid.org/0000-0002-8600-5448</orcidid><orcidid>https://orcid.org/0000-0003-3786-0912</orcidid><orcidid>https://orcid.org/0000-0002-7768-6819</orcidid><orcidid>https://orcid.org/0000-0001-6050-2983</orcidid><orcidid>https://orcid.org/0000-0001-7600-1227</orcidid><orcidid>https://orcid.org/0000-0001-8848-0851</orcidid><orcidid>https://orcid.org/0000-0003-0898-9178</orcidid><orcidid>https://orcid.org/0000-0002-5887-9711</orcidid><orcidid>https://orcid.org/0000000176001227</orcidid><orcidid>https://orcid.org/0000000235879671</orcidid><orcidid>https://orcid.org/0000000179920018</orcidid><orcidid>https://orcid.org/0000000188480851</orcidid><orcidid>https://orcid.org/0000000286005448</orcidid><orcidid>https://orcid.org/0000000303617500</orcidid><orcidid>https://orcid.org/0000000344143532</orcidid><orcidid>https://orcid.org/0000000214998217</orcidid><orcidid>https://orcid.org/0000000308989178</orcidid><orcidid>https://orcid.org/0000000266579604</orcidid><orcidid>https://orcid.org/000000031114597X</orcidid><orcidid>https://orcid.org/000000033894662X</orcidid><orcidid>https://orcid.org/0000000277686819</orcidid><orcidid>https://orcid.org/0000000210703565</orcidid><orcidid>https://orcid.org/0000000257037125</orcidid><orcidid>https://orcid.org/0000000312331694</orcidid><orcidid>https://orcid.org/0000000337860912</orcidid><orcidid>https://orcid.org/0000000160502983</orcidid><orcidid>https://orcid.org/0000000258879711</orcidid></search><sort><creationdate>202004</creationdate><title>Achieving 280 Gbar hot spot pressure in DT-layered CH capsule implosions at the National Ignition Facility</title><author>Döppner, T. ; Hinkel, D. E. ; Jarrott, L. C. ; Masse, L. ; Ralph, J. E. ; Benedetti, L. R. ; Bachmann, B. ; Celliers, P. M. ; Casey, D. T. ; Divol, L. ; Field, J. E. ; Goyon, C. ; Hatarik, R. ; Hohenberger, M. ; Izumi, N. ; Khan, S. F. ; Kritcher, A. L. ; Ma, T. ; MacGowan, B. J. ; Millot, M. ; Milovich, J. ; Nagel, S. ; Pak, A. ; Park, J. ; Patel, P. ; Tommasini, R. ; Volegov, P. ; Weber, C. ; Landen, O. L. ; Callahan, D. A. ; Hurricane, O. A. ; Edwards, M. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-2b0f5d65573f6b1d27ea77b9b5562664f07ca414aed3d9f70ec3ac0d5e51d62b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ablation</topic><topic>Diameters</topic><topic>Energy transfer</topic><topic>Hohlraums</topic><topic>Ignition</topic><topic>Implosions</topic><topic>Interface stability</topic><topic>Plasma physics</topic><topic>Reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Döppner, T.</creatorcontrib><creatorcontrib>Hinkel, D. E.</creatorcontrib><creatorcontrib>Jarrott, L. C.</creatorcontrib><creatorcontrib>Masse, L.</creatorcontrib><creatorcontrib>Ralph, J. E.</creatorcontrib><creatorcontrib>Benedetti, L. R.</creatorcontrib><creatorcontrib>Bachmann, B.</creatorcontrib><creatorcontrib>Celliers, P. M.</creatorcontrib><creatorcontrib>Casey, D. T.</creatorcontrib><creatorcontrib>Divol, L.</creatorcontrib><creatorcontrib>Field, J. E.</creatorcontrib><creatorcontrib>Goyon, C.</creatorcontrib><creatorcontrib>Hatarik, R.</creatorcontrib><creatorcontrib>Hohenberger, M.</creatorcontrib><creatorcontrib>Izumi, N.</creatorcontrib><creatorcontrib>Khan, S. F.</creatorcontrib><creatorcontrib>Kritcher, A. L.</creatorcontrib><creatorcontrib>Ma, T.</creatorcontrib><creatorcontrib>MacGowan, B. J.</creatorcontrib><creatorcontrib>Millot, M.</creatorcontrib><creatorcontrib>Milovich, J.</creatorcontrib><creatorcontrib>Nagel, S.</creatorcontrib><creatorcontrib>Pak, A.</creatorcontrib><creatorcontrib>Park, J.</creatorcontrib><creatorcontrib>Patel, P.</creatorcontrib><creatorcontrib>Tommasini, R.</creatorcontrib><creatorcontrib>Volegov, P.</creatorcontrib><creatorcontrib>Weber, C.</creatorcontrib><creatorcontrib>Landen, O. L.</creatorcontrib><creatorcontrib>Callahan, D. A.</creatorcontrib><creatorcontrib>Hurricane, O. A.</creatorcontrib><creatorcontrib>Edwards, M. J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Döppner, T.</au><au>Hinkel, D. E.</au><au>Jarrott, L. C.</au><au>Masse, L.</au><au>Ralph, J. E.</au><au>Benedetti, L. R.</au><au>Bachmann, B.</au><au>Celliers, P. M.</au><au>Casey, D. T.</au><au>Divol, L.</au><au>Field, J. E.</au><au>Goyon, C.</au><au>Hatarik, R.</au><au>Hohenberger, M.</au><au>Izumi, N.</au><au>Khan, S. F.</au><au>Kritcher, A. L.</au><au>Ma, T.</au><au>MacGowan, B. J.</au><au>Millot, M.</au><au>Milovich, J.</au><au>Nagel, S.</au><au>Pak, A.</au><au>Park, J.</au><au>Patel, P.</au><au>Tommasini, R.</au><au>Volegov, P.</au><au>Weber, C.</au><au>Landen, O. L.</au><au>Callahan, D. A.</au><au>Hurricane, O. A.</au><au>Edwards, M. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Achieving 280 Gbar hot spot pressure in DT-layered CH capsule implosions at the National Ignition Facility</atitle><jtitle>Physics of plasmas</jtitle><date>2020-04</date><risdate>2020</risdate><volume>27</volume><issue>4</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>We are reporting on a series of indirect-drive 0.9-scale CH capsule implosions (inner radius = 840 μm) fielded in low gas-fill (0.6 mg/cm3) hohlraums of 6.72 mm diameter at the National Ignition Facility. Thanks to the 11%-reduction of the capsule size at a given hohlraum diameter compared to previously tested full-scale capsules, we achieved good hot spot symmetry control near 33% cone-fraction and without the need to invoke cross beam energy transfer. As a result, we achieved a hot spot pressure of 280 ± 40 Gbar, which is the highest pressure demonstrated in layered DT implosions with CH capsules to date. Pushing this design to higher velocity resulted in a reduction of neutron yield. Highly resolved capsule simulations suggest that higher Au M-shell preheat resulted in an increase in Atwood number at the ablator–ice interface, which leads to increased fuel-ablator instability and mixing. The results reported here provide important scaling information for next-generation CH designs.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5135921</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-3894-662X</orcidid><orcidid>https://orcid.org/0000-0003-1114-597X</orcidid><orcidid>https://orcid.org/0000-0002-1499-8217</orcidid><orcidid>https://orcid.org/0000-0003-0361-7500</orcidid><orcidid>https://orcid.org/0000-0003-1233-1694</orcidid><orcidid>https://orcid.org/0000-0002-1070-3565</orcidid><orcidid>https://orcid.org/0000-0001-7992-0018</orcidid><orcidid>https://orcid.org/0000-0002-5703-7125</orcidid><orcidid>https://orcid.org/0000-0002-6657-9604</orcidid><orcidid>https://orcid.org/0000-0002-3587-9671</orcidid><orcidid>https://orcid.org/0000-0003-4414-3532</orcidid><orcidid>https://orcid.org/0000-0002-8600-5448</orcidid><orcidid>https://orcid.org/0000-0003-3786-0912</orcidid><orcidid>https://orcid.org/0000-0002-7768-6819</orcidid><orcidid>https://orcid.org/0000-0001-6050-2983</orcidid><orcidid>https://orcid.org/0000-0001-7600-1227</orcidid><orcidid>https://orcid.org/0000-0001-8848-0851</orcidid><orcidid>https://orcid.org/0000-0003-0898-9178</orcidid><orcidid>https://orcid.org/0000-0002-5887-9711</orcidid><orcidid>https://orcid.org/0000000176001227</orcidid><orcidid>https://orcid.org/0000000235879671</orcidid><orcidid>https://orcid.org/0000000179920018</orcidid><orcidid>https://orcid.org/0000000188480851</orcidid><orcidid>https://orcid.org/0000000286005448</orcidid><orcidid>https://orcid.org/0000000303617500</orcidid><orcidid>https://orcid.org/0000000344143532</orcidid><orcidid>https://orcid.org/0000000214998217</orcidid><orcidid>https://orcid.org/0000000308989178</orcidid><orcidid>https://orcid.org/0000000266579604</orcidid><orcidid>https://orcid.org/000000031114597X</orcidid><orcidid>https://orcid.org/000000033894662X</orcidid><orcidid>https://orcid.org/0000000277686819</orcidid><orcidid>https://orcid.org/0000000210703565</orcidid><orcidid>https://orcid.org/0000000257037125</orcidid><orcidid>https://orcid.org/0000000312331694</orcidid><orcidid>https://orcid.org/0000000337860912</orcidid><orcidid>https://orcid.org/0000000160502983</orcidid><orcidid>https://orcid.org/0000000258879711</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2020-04, Vol.27 (4) |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_osti_scitechconnect_1607945 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Ablation Diameters Energy transfer Hohlraums Ignition Implosions Interface stability Plasma physics Reduction |
title | Achieving 280 Gbar hot spot pressure in DT-layered CH capsule implosions at the National Ignition Facility |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A29%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Achieving%20280%20Gbar%20hot%20spot%20pressure%20in%20DT-layered%20CH%20capsule%20implosions%20at%20the%20National%20Ignition%20Facility&rft.jtitle=Physics%20of%20plasmas&rft.au=D%C3%B6ppner,%20T.&rft.date=2020-04&rft.volume=27&rft.issue=4&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.5135921&rft_dat=%3Cproquest_osti_%3E2385056829%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2385056829&rft_id=info:pmid/&rfr_iscdi=true |